Project description:The trillions of microorganisms in the human gastrointestinal tract are an underexplored aspect of pharmacology. Despite numerous examples of microbial effects on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the commonly prescribed cardiac glycoside, digoxin, by Eggerthella lenta. Whole genome transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, absent in non-metabolizing E. lenta strains, and predictive of the efficiency of digoxin inactivation by the human gut microbiome. Digoxin inactivation was further enhanced by microbial interactions and inhibited by arginine. Pharmacokinetic studies using gnotobiotic mice revealed that increasing dietary protein reduces the in vivo metabolism of digoxin by E. lenta, with significant changes to drug concentration in the urine and serum. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes. RNA-Seq analysis of Eggerthella lenta cultured with or without digoxin.
Project description:Brain and central nervous system (CNS) tumors are the leading cause of cancer-related deaths in both adults and children, particularly affecting those aged 0–14 years. Efforts to develop targeted therapies have largely been unsuccessful, with limited improvement in survival rates. This underscores the urgent need for more effective treatments. Recent research highlights the importance of the gut microbiota and its collective genomes, known as the microbiome, in maintaining overall health. The microbiome helps prevent infections and regulates immune responses both locally and throughout the body. There is a strong connection between the gastrointestinal (GI) system and the CNS, as the CNS plays a crucial role in controlling the GI tract’s function and balance. The relationship between the gut microbiota and the brain, referred to as the microbiota-gut-brain axis, is a complex interaction that may influence CNS cancer development and treatment outcomes. In this study, researchers examined the gut microbiota composition in a group of pediatric cancer patients, focusing on those with CNS tumors.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:The trillions of microorganisms in the human gastrointestinal tract are an underexplored aspect of pharmacology. Despite numerous examples of microbial effects on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the commonly prescribed cardiac glycoside, digoxin, by Eggerthella lenta. Whole genome transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, absent in non-metabolizing E. lenta strains, and predictive of the efficiency of digoxin inactivation by the human gut microbiome. Digoxin inactivation was further enhanced by microbial interactions and inhibited by arginine. Pharmacokinetic studies using gnotobiotic mice revealed that increasing dietary protein reduces the in vivo metabolism of digoxin by E. lenta, with significant changes to drug concentration in the urine and serum. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes.