Project description:This study presents the first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus, Aspergillus nidulans, following growth on the International Space Station (ISS). The investigation included the A. nidulans wild-type and 3 mutant strains, two of which were genetically engineered to enhance secondary metabolite (SM) production. Whole genome sequencing (WGS) revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the SM global regulator laeA, ISS conditions induced a point mutation that resulted in the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and SM biosynthesis was observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. Together, these data provide valuable insights into the genetic and molecular adaptation mechanism of A. nidulans to the spacecraft environment and present many economic benefits.
Project description:In this study the proteome of soluble intracellular and extracellular samples have been analysed of the gram positive BAcillus pumilus.
Project description:The proteome of Bacillus pumilus spores was established by shotgun proteomics to better characterize this biological material used as indicator to assess the effectiveness of decontamination procedures.
Project description:Purpose: The goal of this study are to reveal the internal mechanism of Bacillus pumilus G5 and silicon increased Glycyrrhiza uralensis Fisch. seedlings drought-tolerance by RNA-Seq. Methods: mRNA profiles of Glycyrrhiza uralensis Fisch. Seedling in five treatment: control treatment, drought stress treatment, drought stress with G5 treatment, drought stress with Si treatment and drought stress with G5 combined Si treatment. Results: The full-length transcriptome sequencing of 15 samples was completed, and the clean data of each sample was 6.28GB. All the consistent transcript sequences were aligned to the reference genome by minimap2 software and then de-redundant analysis was performed. Finally, 37267 genes were obtained. A total of 6934 DEGs were identified in four comparisons (D vs CK, DB vs D, DSi vs D, and DBSi vs D), among which are 967, 1559, 1278 and 3130 DEGs in four comparisons, respectively. Conclusions: Our study help to better understand the underlying molecular mechanisms of Bacillus pumilus G5 and silicon improve the drought-tolerance of G. uralensis.