Project description:Background: It remains unclear how high-risk Escherichia coli lineages, like sequence type (ST) 131, initially adapt to carbapenem exposure in its progression to becoming carbapenem resistant. Methods: Carbapenem mutation frequency was measured in multiple subclades of extended-spectrum β-lactamase (ESBL) positive ST131 clinical isolates using a fluctuation assay followed by whole genome sequencing (WGS) characterization. Genomic, transcriptomic, and porin analyses of ST131 C2/H30Rx isolate, MB1860, under prolonged, increasing carbapenem exposure was performed using two distinct experimental evolutionary platforms to measure fast vs. slow adaptation. Results: All thirteen ESBL positive ST131 strains selected from a diverse (n=184) ST131 bacteremia cohort had detectable ertapenem (ETP) mutational frequencies with a statistically positive correlation between initial ESBL gene copy number and mutation frequency (r = 0.87, P<1e-5). WGS analysis of mutants showed initial response to ETP exposure resulted in significant increases in ESBL gene copy numbers or mutations in outer membrane porin (Omp) encoding genes in the absence of ESBL gene amplification with subclade specific adaptations. In both experimental evolutionary platforms, MB1860 responded to initial ETP exposure by increasing blaCTX-M-15 copy numbers via modular, insertion sequence 26 (IS26) mediated pseudocompound transposons (PCTns). Transposase activity driven by PCTn upregulation was a conserved expression signal in both experimental evolutionary platforms. Stable mutations in Omp encoding genes were detected only after prolonged increasing carbapenem exposure consistent with clinical observations. Conclusions: ESBL gene amplification is a conserved response to initial carbapenem exposure, especially within the high-risk ST131 C2 subclade. Targeting such amplification could assist with mitigating carbapenem resistance development.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein.
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Avian pathogenic Escherichia coli strains frequently cause extra-intestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E.coli strains and may also act as pathogens for humans. In this work, three type VI secretion systems were deleted to analyze which pathogenicity characteristics would change in the mutants, compared to wild type strain (SEPT 362).
Project description:Here, we treated Escherichia coli strain TO114 expressing a halotolerant cyanobacterium Halothece sp. PCC7418-derived NhaC Na+/H+ antiporter (H2569) with salt stress (0.4 M NaCl) and performed RNA sequencing analysis.
Project description:An experiment to identify the downstream targets of PatE, a prophage encoded AraC-like transcriptional regulator, in transcriptional activation of acid-resistance pathways of enterohemorrhagic Escherichia coli strain EDL933 using deletion and complementation strains (Delta3 and Delta3_1, respectively).
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆arcA mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the ArcA protein. The results are further described in the manuscript The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli