Project description:BackgroundGiant cell glioblastoma (gcGBM) is a rare histologic subtype of glioblastoma characterized by numerous bizarre multinucleate giant cells and increased reticulin deposition. Compared with conventional isocitrate dehydrogenase (IDH)-wildtype glioblastomas, gcGBMs typically occur in younger patients and are generally associated with an improved prognosis. Although prior studies of gcGBMs have shown enrichment of genetic events, such as TP53 alterations, no defining aberrations have been identified. The aim of this study was to evaluate the genomic profile of gcGBMs to facilitate more accurate diagnosis and prognostication for this entity.MethodsThrough a multi-institutional collaborative effort, we characterized 10 gcGBMs by chromosome studies, single nucleotide polymorphism microarray analysis, and targeted next-generation sequencing. These tumors were subsequently compared to the genomic and epigenomic profile of glioblastomas described in The Cancer Genome Atlas (TCGA) dataset.ResultsOur analysis identified a specific pattern of genome-wide massive loss of heterozygosity (LOH) driven by near haploidization in a subset of glioblastomas with giant cell histology. We compared the genomic signature of these tumors against that of all glioblastomas in the TCGA dataset (n = 367) and confirmed that our cohort of gcGBMs demonstrated a significantly different genomic profile. Integrated genomic and histologic review of the TCGA cohort identified 3 additional gcGBMs with a near haploid genomic profile.ConclusionsMassive LOH driven by haploidization represents a defining molecular hallmark of a subtype of gcGBM. This unusual mechanism of tumorigenesis provides a diagnostic genomic hallmark to evaluate in future cases, may explain reported differences in survival, and suggests new therapeutic vulnerabilities.
Project description:We characterized the mouse trophoblast giant cell epigenome and gene expression profiles. We then compared these data to our data on underrepresentation in the polyploid trophoblast giant cells. We profiled 5 histone modifications (+ chromatin input) using ChIP-Seq, and digital expression profiles (3' RNA-Seq) for trophoblast giant cells derived from mouse. Furthermore, we profiled digital expression profiles (3' RNA-Seq) for in vivo trophoblast giant cells samples from e9.5 wildtype mouse trophoblast giant cells. We found that underrepresented domains in trophoblast giant cells are enriched for repressive marks and anti-correlate with active marks and transcription.
Project description:We characterized the mouse trophoblast giant cell epigenome and gene expression profiles. We then compared these data to our data on underrepresentation in the polyploid trophoblast giant cells.
Project description:Giant cell granulomas of the jaws often occur sporadically as single central or peripheral lesions. They are characterized by KRAS, FGFR1, or TRPV4 somatic mutations, the latter occurring exclusively in the central form. Less commonly, multiple giant cell lesions can develop in the context of syndromes such as cherubism, which is an autosomal dominant bone disease. Morphologically, giant cell granulomas can closely resemble other giant cell-rich lesions such as non-ossifying fibroma and aneurysmal bone cyst, and to a minor extent giant cell tumour of bone and chondroblastoma. The epigenetic basis of these giant cell-rich tumours is unclear and, recently, DNA methylation profile has been shown to be clinically useful for the diagnosis of other tumour types, including brain tumours as well as bone and soft tissue sarcomas. Therefore, we aimed to assess the DNA methylation profile of central and peripheral sporadic giant cell granulomas of the jaws and cherubism to test whether DNA methylation patterns can help to distinguish these entities. Additionally, we further compared the DNA methylation profile of these lesions with those of other giant cell-rich mimics to investigate if the microscopic similarities extend to the epigenetic level. Our results showed that central and peripheral sporadic giant cell granulomas of the jaws and cherubism share a related DNA methylation pattern with that of peripheral sporadic giant cell granulomas and cherubism appearing slightly distinct, while central sporadic giant cell granulomas show overlap with both of the former. Non-ossifying fibroma, aneurysmal bone cyst, giant cell tumour of bone, and chondroblastoma, on the other hand, have distinct methylation patterns. Therefore, DNA methylation profiling is currently not capable of clearly distinguishing sporadic and cherubism-associated giant cell lesions of the jaws. Conversely, it could discriminate sporadic giant cell granulomas from their giant cell-rich mimics.
Project description:DNA copy number profiling of 32 glioblastoma orthotopic xenografts Descriptive experiment, comparison of 39 glioblastoma tumors as orthotopic xenografts flow sorted for anueploidy
Project description:This SuperSeries is composed of the following subset Series: GSE38814: Glioblastoma Orthotopic Xenograft Transcriptome GSE38815: Glioblastoma Xenograft Comparative Genomic Hybridization Arrays Refer to individual Series