Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources
Project description:This SuperSeries is composed of the following subset Series: GSE37758: Aspergillus niger : Control (fructose) vs. steam-exploded sugarcane induction (SEB) GSE37760: Aspergillus niger : Control (fructose) vs. xylose + arabinose (XA) Refer to individual Series
Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources Three conditions (glucose, maltose and xylose) with three biological replicates for A. oryzae and A. niger
Project description:Expression data from batch cultivations of Aspergillus niger wild type strain ATCC 1015 and adrA, facB and creA deletion mutants constructed on ATCC 1015 background strain with glucose or glycerol as carbon sources. Genome-wide transcriptome analysis was used to identify genes either affected directly or indirectly by each transcription factor investigated during growth on a repressing or a derepressing carbon source. For this purpose, batch cultivations under well-controlled conditions were performed with Aspergillus niger wild type strain ATCC 1015 and the three deletion mutants of the corresponding transcription factors AdrA, FacB and CreA. Samples for RNA extraction were collected and further processed for hybridization in custom-designed Affymetrix microarrays containing probes for three Aspergillus species, including A. niger.
Project description:Expression data from batch cultivations of Aspergillus niger wild type strain ATCC 1015 and adrA, facB and creA deletion mutants constructed on ATCC 1015 background strain with glucose or glycerol as carbon sources. Genome-wide transcriptome analysis was used to identify genes either affected directly or indirectly by each transcription factor investigated during growth on a repressing or a derepressing carbon source. For this purpose, batch cultivations under well-controlled conditions were performed with Aspergillus niger wild type strain ATCC 1015 and the three deletion mutants of the corresponding transcription factors AdrA, FacB and CreA. Samples for RNA extraction were collected and further processed for hybridization in custom-designed Affymetrix microarrays containing probes for three Aspergillus species, including A. niger. Triplicate batch fermentations of each of the four Aspergillus niger strains used, the wild type A. niger strain ATCC 1015 and three gene deletion mutants, were carried out using glucose or glycerol as carbon source, and transcriptome analysis was performed. Biomass from each batch cultivation was harvested in the exponential phase of growth and further processed for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Using transcriptomics, the strain-specific metabolism was mapped for two whole-genome sequenced strains of Aspergillus niger Keywords: Strain comparison
Project description:This SuperSeries is composed of the following subset Series: GSE9275: A tri-species Aspergillus array (nidulans arrays) GSE9276: A tri-species Aspergillus array (niger arrays) GSE9277: A tri-species Aspergillus array (oryzae arrays) Keywords: SuperSeries Refer to individual Series
Project description:The aim of this study was to investigate the regulatory role of Aspergillus niger AmyR and InuR during growth on inulin and sucrose
Project description:Aspergillus niger produces a variety of lignocellulolytic enzymes (cellulases, hemicellulases, among others) and is regarded as cell factory for the production of heterologous proteins. Therefore, there is a growing interest in the study of its genes and the understanding of the cellular mechanisms in order to expand its applications. On the other hand, we have shown that enzyme production by A. niger is higher when grown forming biofilms than when grown conventionally in submerged systems. The objective of this study was to perform a global transcriptomic analysis and an expression analysis of both lignocellulases and biofilm regulatory genes as compared to A. niger in submerged culture. DNA microarray assays were performed to investigate the global gene expression which yielded information on the expression of more than 90% of A. niger genes. To further this comparison, the two culture systems were supplemented with different carbon sources (glucose, lactose, xylose and maltose) to establish a differential gene expression under different culture conditions. Also, to validate the differential expression qPCR was performed for quantitative comparison of the transcriptional level of genes in both culture systems. Organism : Aspergillus niger, Agilent Aspergillus niger Gene expression 4x44k Array AMADID: 032510 Grant Information: Grant Nº 072-FINCyT-PIN2008 from the National Program of Science and Technology of Peru Contributor: Institut Pasteur de Montevideo, Uruguay
Project description:Galactose catabolism in Aspergillus nidulans is regulated by at least two regulators, GalR and GalX. In Aspergillus niger only GalX is present, and its role in D-galactose catabolism in this fungus was investigated. Phenotypic and gene expression analysis of a wild type and a galX disruptant revealed that GalX does not substitute for the absence of GalR in A. niger, it regulates the D-galactose oxido-reductive pathway, but not the Leloir pathway. Four genes, including the recently characterized ladB (galactitol dehydrogenase) were found to have differencial expressions that are highly relevant to GalX , indicating a novel oxido-reductive pathway in A.niger .