Project description:We sequenced and analyzed the genome of a highly inbred miniature Chinese pig strain, the Banna Minipig Inbred Line (BMI). we conducted whole genome screening using next generation sequencing (NGS) technology and performed SNP calling using Sus Scrofa genome assembly Sscrofa11.1.
Project description:Genome-wide single nucleotide polymorphism array and whole-genome sequencing reveal the inbreeding progression of Banna minipig inbred line [Seq]
Project description:The gut microbiota coevolve with the host and can be stably transmitted to the offspring. Host genetics plays a crucial role in the composition and abundance of gut microbiota. Inbreeding can cause a decrease of the host's genetic diversity and the heterozygosity. In this study, we used 16S rRNA gene sequencing to compare the differences of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to understand the impact of inbreeding on the gut microbiota. Three dominant bacteria (Stenotrophlomonas, Streptococcus, and Lactobacillus) were steadily enriched in both the Diannan small-ear pig and Banna minipig inbred. After inbreeding, the gut microbiota alpha diversity and some potential probiotics (Bifidobacterium, Tricibacter, Ruminocaccae, Christensenellaceae, etc.) were significantly decreased, while the pathogenic Klebsiella bacteria was significantly increased. In addition, the predicted metagenomic analysis (PICRUSt2) indicated that several amino acid metabolisms (''Valine, leucine, and isoleucine metabolism'', ''Phenylalanine, tyrosine, and tryptophan biosynthesis'', ''Histidine metabolism'') were also markedly decreased after the inbreeding. Altogether our data reveal that host inbreeding altered the composition and the predicted function of the gut microbiome, which provides some data for the gut microbiota during inbreeding.
Project description:The genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress. We made a c-DNA microarray analysis in Drosophila melanogaster attempting to differentiate causes from responses of inbreeding depression. The rationale of the experiment was that, while depression is a general phenomenon producing similar consequences in different inbred lines, its first genetic causes would be different for each inbred line, as they are expected to be caused by the fixation of rare deleterious genes. Many changes in expression were common to all sets, but fourteen genes, grouped in four expression clusters, showed strong set-specific changes, and were therefore candidates to be sources of the inbreeding depression observed.
Project description:Successful production of offspring in mammals is determined by the growth and apoptosis pathway, which is responsible for maintaining the balance between the estrous cycle. It is also believed that the development of the porcine ovary is regulated similarly; however, the molecular mechanism underlying differences in follicle development in the minipig and pig has yet to be elucidated. The present study aimed to identify developmental-associated genes differentially expressed in the minipig vs. pig.
Project description:The genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress. We made a c-DNA microarray analysis in Drosophila melanogaster attempting to differentiate causes from responses of inbreeding depression. The rationale of the experiment was that, while depression is a general phenomenon producing similar consequences in different inbred lines, its first genetic causes would be different for each inbred line, as they are expected to be caused by the fixation of rare deleterious genes. Many changes in expression were common to all sets, but fourteen genes, grouped in four expression clusters, showed strong set-specific changes, and were therefore candidates to be sources of the inbreeding depression observed. We took four sets of inbred sublines, each set descending from a different founding pair obtained from a large outbred stock, and compared the expression of the three most depressed sublines and the three least depressed sublines from each set.
Project description:Lung ischemia-reperfusion (I/R) injury remains one of the common complications after various cardiopulmonary surgeries. I-R injury represents one potentially maladaptive response of the innate immune system which is featured by an exacerbated sterile inflammatory response triggered by tissue damage. Thus, understanding the key components and processes involved in sterile inflammation during lung I-R injury is critical to alter care and extend survival for patients with acute lung injury. We constructed a minipig surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. Lung tissues from minipig with sham operation (one sample), left side lung tissues (the operated side)(one sample) and right side lung tissues (the non-operated side)(one sample) from minipig with lung ischemia-reperfusion were submitted for gene expression array analysis.