Project description:Studies of fusion genes have mainly focused on the formation of fusions that result in the production of hybrid proteins or, alternatively, on promoter-switching events that put a gene under the control of aberrant signals. However, gene fusions may also disrupt the transcriptional control of genes that are encoded in introns downstream of the breakpoint. By ignoring structural constraints of the transcribed fusions, we highlight the importance of a largely unexplored function of fusion genes. Using breast cancer as an example, we show that miRNA host genes are specifically enriched in fusion genes and that many different, low-frequency, 5' partners may deregulate the same miRNA irrespective of the coding potential of the fusion transcript. These results indicate that the concept of recurrence, defined by the rate of functionally important aberrations, needs to be revised to encompass convergent fusions that affect a miRNA independently of transcript structure and protein-coding potential.
Project description:Mitochondrial metabolism plays a central role in promoting cancer growth and metastatic progression. The transition between a hyperfused and fragmented mitochondrial network is termed mitochondrial dynamics and is important for many mitochondria-associated functions; however, little is known regarding how this process influences metastasis. Here, we show that breast cancer cells with low metastatic potential exhibit a more fused mitochondrial network compared to highly metastatic breast cancer cells. To examine whether a fused mitochondrial network could impair metastasis, we inhibited mitochondrial fission in metastatic breast cancer cells by individual genetic deletion of three key regulators of mitochondrial fission (Drp1, Fis1 and Mff) or pharmacological intervention using leflunomide, an anti-rheumatic drug. These cells displayed a fused mitochondrial network and limited survival under anoikis conditions, consistent with mitochondrial fusion limiting metastasis. Transcriptomics and metabolomics analyses revealed that mitochondrial fusion causes significant alterations in metabolic pathways and processes related to cell adhesion. Functional bioenergetics assays demonstrated that mitochondrial fusion limited the mitochondrial capacity of cancer cells. Mitochondrial fusion in breast cancer cells had no significant effect on primary tumor growth but almost completely ablated lung metastasis in vivo. Furthermore, the transcriptomics signature associated with enhanced mitochondrial fusion correlated with improved survival in patients with breast cancer. Overall, our findings highlight mitochondrial fusion as a therapeutic opportunity for breast cancer.
Project description:This study was conducted by using Flag tag to IP proteins expressed with fusion small peptides encoding LncRNA MAGI2-AS3 and identified by high resolution mass spectrometry.
Project description:SnowShoes-FTD, a fusion transcript discovery tool, was used to identify fusions in breast cancer cell lines using the RNA-Seq data Total RNA extracted from cell lines. The total RNA was used for construction of RNA-Seq library for RNA-Sequencing.
Project description:To identify novel gene amplification events that may contribute to breast cancer progression, we examined copy number variation in 161 primary breast cancer samples using the Affymetrix 250K_Nsp and 250K_Sty microarrays or the Affymetrix SNP5.0 microarray.