Project description:Pediococcus acidilactici HN9 is a beneficial lactic acid bacterium isolated from Nhang, a traditional Thai-style fermented beef. In this study, the molecular properties of P. acidilactici HN9 were characterized to provide insights into its potential probiotic activity. Specifically, this work sought to report the complete genome of P. acidilactici HN9 and perform a comparative genome analysis with other bacterial strains belonging to the genus Pediococcus. Genomic features of HN9 were compared with those of all other bacterial Pediococcus strains to examine the adaptation, evolutionary relationships, and diversity within this genus. Additionally, several bioinformatic approaches were used to investigate phylogenetic relationships, genome stability, virulence factors, bacteriocin production, and antimicrobial resistance genes of the HN9 strain, as well as to ensure its safety as a potential starter culture in food applications. A 2,034,522 bp circular chromosome and two circular plasmids, designated pHN9-1 (42,239-bp) and pHN9-2 (30,711-bp), were detected, and used for pan-genome analysis, as well as for identification of bacteriocin-encoding genes in 129 strains belonging to all Pediococcus species. Two CRISPR regions were identified in P. acidilactici HN9, including type II-A CRISPR/CRISPR-associated (Cas). This study provides an in-depth analysis on P. acidilactici HN9, facilitating a better understanding of its adaptability to different environments and its mechanism to maintain genome stability over time.
Project description:The wild yeast community was studied in fermented sausages from pork and game meat (deer and wild boar) during the maturation process from different curing rooms. Although the biotechnological importance of yeasts in the maturation process of pork sausages is known, there is a lack of information for sausage maturation involving game meat. A total of 123 yeasts were isolated and, by amplifying and sequencing of the ITS region, were classified in 14 species. Debaryomyces hansenii, Kazachstania servazzii, and Wickerhamomyces anomalus were isolated in both pork and game samples. The PCR-RAPD technique differentiated between 26 and 18 strains from pork and game meat sausages, respectively. The physicochemical parameters and their relationship with the yeast community were also studied. The antioxidant and anti-lipid peroxidation capability were analyzed and the 70% and 50% of the tested strains showed these abilities, respectively. Moreover, the biocontrol capability against mycotoxigenic molds was found in 19 strains, but better results were observed in game meat yeasts. On the other hand, almost 30% of strains produce a pleasant olfactory aroma, and volatile compounds associated with the yeast pathway metabolic during the maturation process have been characterized such as esters, aldehydes, fusel alcohols, etc. This study has allowed a better understanding of the biodiversity of this type of food, as well as selecting potential yeast strains for their future use as starters.
Project description:This study aimed to investigate the effects of two Thai traditional recipes including Dapphitkhai and Chanthaleela on various immune parameters and signaling pathways in human white blood cells. The gene expression of whole blood stimulation was analyzed through RNA-sequencing and pathway analysis. Chanthaleela and Dapphitkhai demonstrated a significant decrease in IL-8 secretion and an increase in IFN-β secretion, suggesting their potential to modulate these signaling pathways. Gene expression analysis of Chanthaleela and Dapphitkhai at 500 µg/mL revealed distinct patterns and identified differentially expressed genes. Gene ontology analysis highlighted the impact of the recipes on immune responses and cytokine regulation, while pathway analysis identified key pathways related to cytokine-cytokine receptor interaction, chemokine signaling, and infection-related processes. This study provides valuable insights into the effects of Thai traditional recipes on immune parameters and signaling pathways in human white blood cells. The findings suggest potential therapeutic applications of Thai traditional medicine in immune-related disorders and viral infections like COVID-19.