Project description:Background: Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Results: Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. Conclusions: We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources. Keywords: Polymorphism discovery, array based genotyping
Project description:Background:; Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Results:; Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. Conclusions:; We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000âs of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources. SUBMITTER_CITATION: Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array Sayan Das, Prasanna R. Bhat, Chinta Sudhakar, Jeffrey D. Ehlers, Steve Wanamaker, Philip A. Roberts, Xinping Cui, Timothy J. Close BMC Genomics 2008, 9:107 Experiment Overall Design: Expression data were generated by hybridizing cowpea cRNA to the soybean genome array. A statistical method called robustified projection pursuit (RPP) was used for Single Feature Polymorphism(SFP) analysis. Only the values from the PM probes were utilized. The use of RNA as a surrogate for genomic DNA eliminated interference from highly repetitive DNA as a technical impediment to SFP detection. An important aspect of the RPP method is that it first utilizes a probe set level analysis to identify SFP-containing probe sets and then chooses individual probes from within each SFP-containing probe set. The net result is the identification of probes that directly overlay polymorphic sequences. Experiment Overall Design: Separate comparisons were made between two genotypes (with two replicates each) for unstressed and drought stressed treatments, resulting in two SFP lists. In the context of SFPs, there is no necessity to have separate stress and control lists; in fact it would be simpler and less costly to have only one SFP list from highly complex RNA made by blending stressed and unstressed RNA. In our case, two separate lists were available as a consequence of another study not described here which compared gene expression patterns in stressed and control plants (data not shown). At 15% outlying score cut-off, we detected 488 SFP probes in stressed and 661 SFP probes in unstressed treatments. The union of these two lists contained 1058 SFP probes and the intersection contained 91. A total of 37 primer pairs targeting 37 putative SFP probe sets were initially tested, of which 25 yielded single amplicons of the expected sizes from both parents. These 25 amplicons targeted 14 probe sets selected from the intersection of the two SFP probe set lists and 11 from the remaining SFP probe sets. 9 of the 14 SFP probe sets (64%) from the intersection list were validated at the DNA sequence level and 8 of the other 11 (73%) were validated.
Project description:Background. Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most cowpea accessions are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. Results. Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at 6 and 13 days post-inoculation (dpi), in the early and late stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z . Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301 M-bM-^@M-^S SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. Conclusion. Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the hostM-bM-^@M-^Ys defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds. A Nimblegen custom design cowpea microarray investigating gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, at 6 and 13 days post-inoculation (dpi), in the early and late stages of the resistance response.
Project description:Background. Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most cowpea accessions are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. Results. Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at 6 and 13 days post-inoculation (dpi), in the early and late stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z . Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301 – SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. Conclusion. Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the host’s defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds.