Project description:Six species and six additional genovars are combined within the so-called Enterobacter cloacae complex, with one of them being the species Enterobacter hormaechei. In a recent population genetic study, two genetic clusters were found in close phylogenetic proximity to the genetic cluster of E. hormaechei. In order to prove the hypothesis that these three genetic clusters belong to the same species, we performed cross-hybridization experiments in microplates with DNAs of representatives of each genetic cluster. The close phylogenetic relationship among the clusters was reflected by their relatively low deltaT(m) values, ranging from 0.3 to 4.8, confirming the hypothesis that the clusters are parts of the same species. These clusters can be distinguished from the other species of the E. cloacae complex, which have deltaT(m) values of 5.6 to 10.3. Forty-eight E. hormaechei strains from the different genetic clusters were phenotypically characterized with 129 biochemical tests. In this way, E. hormaechei could be differentiated from the other species of the E. cloacae complex because it tests negative in the 3-hydroxy-butyrate test. The three genetic clusters of E. hormaechei could also be differentiated from each other by using phenotypic tests. Hence, we propose three new subspecies of E. hormaechei corresponding to genetic clusters VI, VII, and VIII of the E. cloacae complex. E. hormaechei subsp. hormaechei comb. nov. corresponds to the original species description, as it gives negative results for the adonitol, d-arabitol, d-sorbitol, and d-melibiose tests and a positive result for the dulcitol test. E. hormaechei subsp. oharae subsp. nov. gives negative results for the dulcitol, adonitol, and d-arabitol tests and positive results for the d-sorbitol and d-melibiose tests. E. hormaechei subsp. steigerwaltii subsp. nov. gives a negative result for the dulcitol test and positive results for the adonitol, d-arabitol, d-sorbitol, and d-melibiose tests. Among the members of the E. cloacae complex, E. hormaechei seems to be the species most frequently recovered from clinical specimens.
Project description:Boreal toads (Anaxyrus boreas boreas) of the Southern Rocky Mountain population are declining due to the introduction of the chytrid fungus Batrachochytrium dendrobatidis (Bd). Boreal toads in Colorado are generally susceptible to Bd infection, but some Bd-tolerant populations persist in parts of the Southern Rocky Mountain and broader Eastern boreal toad population. We conducted a Bd challenge with lab-reared sibling toads from Bd-susceptible Colorado and purportedly Bd-tolerant Utah populations and report on transcriptomic responses to Bd during late infection in skin and liver tissue. Fewer immune genes were expressed in response to Bd in Colorado toads, but with greater upregulation compared to Utah toads, indicating a dysregulated immune response. Signatures of Bd-tolerance in Utah toads included more moderate upregulation in immune gene expression and a significantly enriched suite of gene functions related to innate and adaptive immune responses. Our transcriptomic results support the notion that Utah toads are tolerant to Bd, rather than resistant, carrying Bd loads similar to Colorado yet having a unique transcriptomic profile and presenting minimal clinical signs of chytridiomycosis. We conclude that closely related populations have divergent transcriptomic responses to Bd with a dysregulated immune response in Bd-susceptible toads.
Project description:Here, we report the genome sequence of Enterobacter hormaechei subsp. steigerwaltii strain BEI01, originally deposited as a member of the Enterobacter cloacae complex. The genome is 4,900,246 bp in size with a GC content of 55.44%; it contains multidrug antimicrobial resistance genes and several metal resistance gene operons.