Project description:Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing "cheese-making" standards is an urgent biotechnological task. Within this study, we for the first time constructed an expression vector allowing production of a recombinant analog of moose chymosin in the expression system of Escherichia coli (strain SHuffle express). We built a model of the spatial structure of moose chymosin and compared the topography of positive and negative surface charges with the correspondent structures of cow and camel chymosins. We found that the distribution of charges on the surface of moose chymosin has common features with that of cow and camel chymosins. However, the moose enzyme carries a unique positively charged patch, which is likely to affect its interaction with the substrate. Biochemical and technological properties of the moose rChn were studied. Commercial rСhns of cow and camel were used as comparison enzymes. In some technological parameters, the moose rChn proved to be superior to the reference enzymes. Сompared with the cow and camel rСhns, the moose chymosin specific activity is less dependent on the changes in CaCl2 concentration in the range of 1-5 mM and pH in the range of 6-7, which is an attractive technological property. The total proteolytic activity of the moose rСhn occupies an intermediate position between the rСhns of cow and camel. The combination of biochemical and technological properties of the moose rСhn argues for further study of this enzyme.
Project description:Chronic wasting disease (CWD) persists in cervid populations of North America and in 2016 was detected for the first time in Europe in a wild reindeer in Norway. We report the detection of CWD in 3 moose (Alces alces) in Norway, identified through a large scale surveillance program. The cases occurred in 13-14-year-old female moose, and we detected an abnormal form of prion protein (PrPSc) in the brain but not in lymphoid tissues. Immunohistochemistry revealed that the moose shared the same neuropathologic phenotype, characterized by mostly intraneuronal deposition of PrPSc. This pattern differed from that observed in reindeer and has not been previously reported in CWD-infected cervids. Moreover, Western blot revealed a PrPSc type distinguishable from previous CWD cases and from known ruminant prion diseases in Europe, with the possible exception of sheep CH1641. These findings suggest that these cases in moose represent a novel type of CWD.
Project description:BackgroundVarestrongylus alces, a lungworm in Eurasian moose from Europe has been considered a junior synonym of Varestrongylus capreoli, in European roe deer, due to a poorly detailed morphological description and the absence of a type-series.MethodsSpecimens used in the redescription were collected from lesions in the lungs of Eurasian moose, from Vestby, Norway. Specimens were described based on comparative morphology and integrated approaches. Molecular identification was based on PCR, cloning and sequencing of the ITS-2 region of the nuclear ribosomal DNA. Phylogenetic analysis compared V. alces ITS-2 sequences to these of other Varestrongylus species and other protostrongylids.ResultsVarestrongylus alces is resurrected for protostrongylid nematodes of Eurasian moose from Europe. Varestrongylus alces causes firm nodular lesions that are clearly differentiated from the adjacent lung tissue. Histologically, lesions are restricted to the parenchyma with adult, egg and larval parasites surrounded by multinucleated giant cells, macrophages, eosinophilic granulocytes, lymphocytes. The species is valid and distinct from others referred to Varestrongylus, and should be separated from V. capreoli. Morphologically, V. alces can be distinguished from other species by characters in the males that include a distally bifurcated gubernaculum, arched denticulate crura, spicules that are equal in length and relatively short, and a dorsal ray that is elongate and bifurcated. Females have a well-developed provagina, and are very similar to those of V. capreoli. Morphometrics of first-stage larvae largely overlap with those of other Varestrongylus. Sequences of the ITS-2 region strongly support mutual independence of V. alces, V. cf. capreoli, and the yet undescribed species of Varestrongylus from North American ungulates. These three taxa form a well-supported crown-clade as the putative sister of V. alpenae. The association of V. alces and Alces or its ancestors is discussed in light of host and parasite phylogeny and host historical biogeography.ConclusionsVarestrongylus alces is a valid species, and should be considered distinct from V. capreoli. Phylogenetic relationships among Varestrongylus spp. from Eurasia and North America are complex and consistent with faunal assembly involving recurrent events of geographic expansion, host switching and subsequent speciation.
Project description:The work presented here provides the first intensive insight into the bacterial populations in the digestive tract of the North American moose (Alces alces). Eight free-range moose on natural pasture were sampled, producing eight rumen samples and six colon samples. Second generation (G2) PhyloChips were used to determine the presence of hundreds of operational taxonomic units (OTUs), representing multiple closely related species/strains (>97% identity), found in the rumen and colon of the moose.A total of 789 unique OTUs were used for analysis, which passed the fluorescence and the positive fraction thresholds. There were 73 OTUs, representing 21 bacterial families, which were found exclusively in the rumen samples: Lachnospiraceae, Prevotellaceae and several unclassified families, whereas there were 71 OTUs, representing 22 bacterial families, which were found exclusively in the colon samples: Clostridiaceae, Enterobacteriaceae and several unclassified families. Overall, there were 164 OTUs that were found in 100% of the samples. The Firmicutes were the most dominant bacteria phylum in both the rumen and the colon. Microarray data available at ArrayExpress, accession number E-MEXP-3721.Using PhyloTrac and UniFrac computer software, samples clustered into two distinct groups: rumen and colon, confirming that the rumen and colon are distinct environments. There was an apparent correlation of age to cluster, which will be validated by a larger sample size in future studies, but there were no detectable trends based upon gender.