Project description:The identification of the genetic risk factors in patients with isolated cleft palate by whole genome sequencing analysis. Pathogenic or likely pathogenic variants were discovered in genes associated with CP (TBX22, COL2A1, FBN1, PCGF2, and KMT2D) in five patients; hence, rare disease variants were identified in 17% of patients with non-syndromic isolated CP. Our results are relevant to routine genetic counselling practice and genetic testing recommendations.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Purpose: Chronic pancreatitis (CP) is considered an irreversible fibroinflammatory pancreatic disease with no active FDA approved therapy. Due to difficulty in accessing pancreas tissues, little is known about local immune responses in human CP. Here we attempted to uncover the disease-specific immune responses in pancreata from two different etiologies of CP (hereditary and idiopathic CP) compared with those from non-diseased controls by using CITE-seq and scTCR-seq. Methods: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) and T cell receptor sequencing of pancreatic immune cells isolated from organ donors (n=3) and CP patients (Hereditary CP, n=5; Idiopathic CP, n=4) who underwent total pancreatectomy. Results: Deep single-cell sequencing revealed distinct immune characteristics and a significantly enriched CCR6+ CD4+ T cells in hereditary compared with idiopathic CP. In hereditary CP, a reduction in T cell clonality was observed due to the increased CD4+ T (Th) cells that replaced tissue resident CD8+ T cells. Lineage tracing analysis with scRNA/TCR-seq data also unveiled unique interactions between CCR6+ Th and Th1 subsets, and TCR clustering analysis showed unique common antigen binding motifs in hereditary CP. In addition, we observed a significant upregulation of the CCR6 ligand (CCL20) among monocytes in hereditary CP as compared with those in idiopathic CP. The functional significance of the CCR6 expression in CD4+ T cells was confirmed by flow cytometry and migration assay. Conclusions: Our approaches with integrative single-cell analyses unveiled distinct pancreatic immune signatures and pathways between different etiologies of CP. Our study specifically unveiled pancreas-specific immune crosstalks through a CCR6-CCL20 axis that might be leveraged as a potential future target in human hereditary CP
Project description:Little is known about the impact of DNA methylation on the evolution/progression of chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. While only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared to controls, ~6,500 differentially methylated CpG sites were found in cells from BC-CML patients. In the majority of affected CpG sites methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes which were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared to CP-CML-derived cells. Several of them are well-known tumor suppressor genes or regulators of cell proliferation. 5-aza-2 -deoxycytidine treatment of CML cells resulted in gene re-expression and in a dose-dependent cell growth reduction. Single nucleotide variants of certain epigenetic modifiers during CML progression were not found. Together, our results demonstrate that methylation changes occur frequently during CML progression and may provide a useful basis for revealing new targets of therapy in advanced CML.
Project description:Genome-wide occupancy analysis of TBX5, NKX2-5 and GATA4 in differentiating WT, Nkx2-5KO (NKO), Tbx5KO (TKO) and Nkx2-5;Tbx5KO (DKO) cells at the cardiac precursor (CP) and cardiomyocyte (CM) differentiation stages. Analysis of TBX5, NKX2-5 and GATA4 occupancy a and gene expression in WT, Tbx5KO, Nkx2-5KO and DoubleKO precursor (CP) and mature (CM) in vitro differentiated cardiomyocytes.
Project description:Chronic pancreatitis (CP) is a pathogenically complex fibro-inflammatory disorder of the pancreas. Our understanding of CP pathogenesis is partly limited by the incomplete characterization of pancreatic cell types. Here, we performed single-cell RNA sequencing on 3,386 cells from the pancreas of one control mouse and mice with caerulein-induced CP. These data provides a preliminary description of the single-cell transcriptome profiles of mouse pancreata and accurately demonstrates the characteristics of pancreatic ductal cells in CP.
Project description:The blood-cerebrospinal fluid (B-CSF) barrier in the choroid plexus (CP) consists of tight junctions between CP epithelial cells. It is critical to maintaining the environmental homeostasis of the central nervous system and is associated with age-related disorders, such as neurodegenerative diseases. Nevertheless, its ageing is poorly understood. This study collects CP from both young and aged mice for single-cell sequencing, aiming at elucidating the molecular mechanisms driving the age-dependent degeneration of the B-CSF barrier in CP.