Project description:Background: Heliconius butterflies are an excellent model system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus and several genes in this region show expression pattern differences across races. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. It seems likely that miRNAs could act as downstream regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. Results: We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs appeared to be differentially expressed between colour pattern races and this was tested further in different developing pupal wing stages using Northern blots. These revealed that differences in expression were due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified miR-193 and miR-2788; located 2380bp apart in an intergenic region. A search for miRNAs in all available H. melpomene BAC sequences (~2.5Mb) did not reveal any other miRNA genes and no novel miRNAs were predicted. There were several regions where other small RNA sequences assembled to the HmYb region and appeared to be differentially expressed.These might represent other regulatory RNAs. Conclusions: Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages. Two miRNAs were located in the HmYb region. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes.
Project description:The parasite species complex Anisakis simplex sensu lato (Anisakis simplex sensu stricto; (A. simplex s.s.), A. pegreffii, A. simplex C) is the main cause of severe anisakiasis (allergy) worldwide and is now an important health matter. In this study, the relationship of this Anisakis species complex and their allergenic capacities is assessed by studying the differences between the two most frequent species (A. simplex s.s., A. pegreffii) and their hybrid haplotype by studying active L3 larvae parasiting Merluccius merluccius.
Project description:Background: Heliconius butterflies are an excellent model system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus and several genes in this region show expression pattern differences across races. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. It seems likely that miRNAs could act as downstream regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. Results: We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs appeared to be differentially expressed between colour pattern races and this was tested further in different developing pupal wing stages using Northern blots. These revealed that differences in expression were due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified miR-193 and miR-2788; located 2380bp apart in an intergenic region. A search for miRNAs in all available H. melpomene BAC sequences (~2.5Mb) did not reveal any other miRNA genes and no novel miRNAs were predicted. There were several regions where other small RNA sequences assembled to the HmYb region and appeared to be differentially expressed.These might represent other regulatory RNAs. Conclusions: Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages. Two miRNAs were located in the HmYb region. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes. High-throughput sequencing of Heliconius melpomene endogenous small RNAs. Size fractionated small RNA from total RNA extracts of two different Heliconius melpomene races (Heliconius melpomene melpomene and Heliconius melpomene rosina) were isolated from wing tissue using miRVana kit. 100µg RNA from 11 individuals of different developmental stages was pooled for each race as follows: 4.1% larval stage <1; 2% larval stage 1-1.75; 2.9% larval stage 2-2.5; 22% larval stage 2.75-3; 19% larval stage > 3; 25% early pupae; 25% mid-melanin pupae. Sequences were ligated to adapters, purified again and reverse transcribed. After PCR amplification the sample was subjected to Solexa/Illumina high throughput pyrosequencing. Please see www.illumina.com for details of the sequencing technology.
Project description:We compared the genome-wide expression profiles of two yeast species (S. cerevisiae and S. paradoxus) using a two-species microarray that contain species-specific probes and can thus measure the expression levels of the two species simultaneosly. In Addition, we used the array to measure expression levels of the interspecific hybrid of these yeast species, while discriminating between the alleles that correspond to the two parental species. Comparison of the between-species differences and the within-hybrid allele differences allows us to separate cis from trans effects. Also, comparison of the overall expression in the hybrids (both alleles) with their parental species allows us to analyze hybrid over-expression and under-expression. Keywords: comparative transcriptome analysis, hybrid gene expression
Project description:Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Uncovering the mechanisms of hybrid sterilitynot only provides insight into the origins of species but also potentially revealsnovel causes of intra-species infertility.Here we identify causes underlying hybrid infertilityofSchizosaccharomyces pombeand S. kambucha, two fission yeast species that are 99.5% identical at the nucleotide level.These yeasts mate to form viable diploids that efficiently complete meiosis. However,S. kambucha/S. pombe hybrids generate few viable gametes, most of which are either aneuploid or diploid.We find that chromosomal rearrangements and related recombination defectsare major causes of hybrid infertility. Surprisingly, using experiments in which we eliminate meiotic recombination, we find thatrecombination defects cannot completely explain the hybrid infertility. Instead, we find that a significant fraction of hybrid infertility is caused by the action of at least three distinct meiotic drive alleles, one on each S. kambucha chromosome,that “cheat” to be transmitted to more than half (up to 90%) of viable gametes.Two of these driving lociare linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. We find that all three S. kambuchadrive loci independently contribute to hybrid infertility by causing nonrandom spore death. This study reveals how quickly multiple barriers to fertility can arise.In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.
Project description:Transcriptional profiling of populations in the clam Ruditapes decussatus determined differentiation in gene-expression along parallel temperature gradients and between races of the Atlantic Ocean and West Mediterranean sea.
2023-04-04 | GSE223000 | GEO
Project description:Promiscuous hybrid exchange of mimicry genes among Heliconius butterfly species
Project description:Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Uncovering the mechanisms of hybrid sterilitynot only provides insight into the origins of species but also potentially revealsnovel causes of intra-species infertility.Here we identify causes underlying hybrid infertilityofSchizosaccharomyces pombeand S. kambucha, two fission yeast species that are 99.5% identical at the nucleotide level.These yeasts mate to form viable diploids that efficiently complete meiosis. However,S. kambucha/S. pombe hybrids generate few viable gametes, most of which are either aneuploid or diploid.We find that chromosomal rearrangements and related recombination defectsare major causes of hybrid infertility. Surprisingly, using experiments in which we eliminate meiotic recombination, we find thatrecombination defects cannot completely explain the hybrid infertility. Instead, we find that a significant fraction of hybrid infertility is caused by the action of at least three distinct meiotic drive alleles, one on each S. kambucha chromosome,that M-bM-^@M-^\cheatM-bM-^@M-^] to be transmitted to more than half (up to 90%) of viable gametes.Two of these driving lociare linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. We find that all three S. kambuchadrive loci independently contribute to hybrid infertility by causing nonrandom spore death. This study reveals how quickly multiple barriers to fertility can arise.In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. Meiotic DNA double-strand break analysis of Schizosaccharomyces kambucha by immunoprecipitating accumulated Rec12-FLAG covalently linked to DNA (without exogenous crosslinking agent used) following nitrogen starvation .
Project description:Parallel clines in a quantitative trait in two mimetic butterfly species despite different levels of genomic divergence and selection