Project description:This study aimed to understand the role of the transcriptional regulator Prdm16 in the development of cortical interneurons in the mouse. Prdm16 was knocked out in cells derived from the medial ganglionic eminence (MGE) by using an Nkx2.1-Cre driver line in combination with a line carrying floxed Prdm16 alleles and with a Cre-dependent tdTomato reporter line (Ai14). The sequencing data compares the gene expression profiles of dissected MGEs at embryonic day 14 (E14), a stage when cortical interneurons are being generated from MGE progenitors.
Project description:Gene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).
Project description:The Otx2 homeobox transcription factor is essential for gastrulation and early neural development. We generated Otx2 conditional knockout (cKO) mice to investigate its roles in telencephalon development after E9.0. We conducted transcriptional profiling and in situ hybridization to identify genes de-regulated in Otx2 cKO ventral forebrain. In parallel, we used ChIP-seq to identify enhancer elements, OTX2 binding motif, and which de-regulated genes are likely direct targets of Otx2 transcriptional regulation. We found that Otx2 was essential in septum specification; regulation of Fgf signaling in the rostral telencephalon; and medial ganglionic eminence (MGE) patterning, neurogenesis, and oligodendrogenesis. Within the MGE, Otx2 was required for ventral but not dorsal identity; this is the first demonstration of a transcription factor that contributes to regional patterning within the MGE. Microdissected subpallium (septum, MGE, and LGE ) from wildtype E12.5 CD-1 embryos was used in three independentanti-OTX2 ChIP-seq experiments.
Project description:The Dlx homeodomain transcription factors are implicated in regulating the function of inhibitory GABAergic interneurons; therefore understanding their functions will provide insights into disorders such as epilepsy, mental retardation and autism. Identifying genes that are downstream of Dlx1/2 function and are relevant for the differentiation and survival of GABAergic interneurons. During embryonic development, cortical GABAergic interneurons are generated in the proliferative zone of the medial ganglionic eminence (MGE), from where they migrate to reach their final positions in the cortex. The differentiation of these interneuron precursors is dependent on Dlx genes, as shown by Dlx1/Dlx2 double mutants, which have a block in GABAergic cell differentiation and in cell migration. When interneuron progenitors are isolated from the mutant MGE and growth in culture, they are able to proceed along their differentiation program. However, mutant cells growth in vitro show defects in cell morphogenesis and increased cell apoptosis. We hypothesize that Dlx transcription factors regulate important aspects of GABAergic neuron differentiation such as the formation and growth of axon and dendrites, and the formation of inhibitory synapses. We generated E15.5 mouse embryos that are Dlx1/2 -/- or Dlx1/2 +/?. Genotype was confirmed by PCR. A total of 8 litters were used. For each experiment, we pooled tissue from at least 6 different embryos of the same genotype. We dissected the ventricular and subventricular zones of the MGE (rostral part). This area contains ~1 million of progenitor cells per embryo. We isolated total RNA using the Stratagene RNA Miniprep kit (these samples are called MGE+/ and MGE-/- in our proposal). In addition, we used the same area (ventricular and subventricular zones of the rostral MGE) to perform primary neuronal cultures. Cells were maintained 3 days in vitro. After that, we isolated total RNA using the Stratagene RNA Miniprep kit (samples called primary cells+/ and primary cells-/- in our proposal). We would like to perform gene expression comparison between: 1) MGE+/ and MGE-/-, and 2) primary cells+/ and primary cells-/-.