Project description:Gene expression profiling reveals a potential role of APC 50% or APC 80% in stimulating hair growth in dermal papilla cells. HFDPCs were human primary cells line, treated with 5 μg/ml APC 50% for 48 h. Microarray gene expression profiling was conducted for three biological replicates HFDPCs were human primary cells line, treated with 5 μg/ml APC 80% for 48 h. Microarray gene expression profiling was conducted for three biological replicates
Project description:250k Sty, 250k Nsp, 250k Hind and 250k Xba Affymetrix SNP arrays for 50 leukemia remission samples used as controls for copy number analysis for GSE9109 and GSE9112. Keywords: Acute leukemia, BCR-ABL1, chronic myeloid leukemia, copy number analysis, loss-of-heterozygosity, genomics *** Due to privacy concerns, the primary SNP array data is no longer available with unrestricted access. Individuals wishing to obtain this data for research purposes may request access using the Web links below. ***
Project description:Soft tissue sarcomas are aggressive mesenchymal cancers that affect more than 10,600 new patients per year in the US, about 40% of whom will die of their disease. Soft tissue sarcomas exhibit remarkable histologic diversity, with more than 50 recognized subtypes, but our knowledge of their genomic alterations is limited. Here we describe the results of an integrative analysis of DNA sequence, copy number, and mRNA expression in 207 samples encompassing seven major subtypes. Genes mutated in more than 5% of samples within a subtype were KIT (in gastrointestinal stromal cell tumors, or GISTs), TP53 (pleomorphic liposarcomas), PIK3CA (myxoid/round-cell liposarcoma), and NF1 (both myxofibrosarcoma and pleomorphic liposarcoma). We show evidence that PIK3CA mutations, found in 18% of myxoid/round-cell liposarcomas, activate AKT in vivo and are associated with poor outcomes. Point mutations in the tumor suppressor gene NF1 were discovered in both myxofibrosarcomas and pleomorphic liposarcomas, while genomic deletions were observed in all subtypes at varying frequencies. Finally, we found that short hairpin RNA-based knockdown of a subset of genes that are amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields the most detailed map of molecular alterations across diverse sarcoma subtypes to date and provides potential subtype-specific targets for therapy.
Project description:Soft tissue sarcomas are aggressive mesenchymal cancers that affect more than 10,600 new patients per year in the US, about 40% of whom will die of their disease. Soft tissue sarcomas exhibit remarkable histologic diversity, with more than 50 recognized subtypes, but our knowledge of their genomic alterations is limited. Here we describe the results of an integrative analysis of DNA sequence, copy number, and mRNA expression in 207 samples encompassing seven major subtypes. Genes mutated in more than 5% of samples within a subtype were KIT (in gastrointestinal stromal cell tumors, or GISTs), TP53 (pleomorphic liposarcomas), PIK3CA (myxoid/round-cell liposarcoma), and NF1 (both myxofibrosarcoma and pleomorphic liposarcoma). We show evidence that PIK3CA mutations, found in 18% of myxoid/round-cell liposarcomas, activate AKT in vivo and are associated with poor outcomes. Point mutations in the tumor suppressor gene NF1 were discovered in both myxofibrosarcomas and pleomorphic liposarcomas, while genomic deletions were observed in all subtypes at varying frequencies. Finally, we found that short hairpin RNA-based knockdown of a subset of genes that are amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields the most detailed map of molecular alterations across diverse sarcoma subtypes to date and provides potential subtype-specific targets for therapy.
Project description:Liposarcomas are rare, heterogeneous and malignant tumors that can be divided into five histological subtypes with different characteristics and clinical behavior. Treatment consists of surgery in combination with systemic chemotherapy, but nevertheless mortality rates are high. More insight into the biology of liposarcoma tumorigenesis is needed to devise novel therapeutic approaches. MicroRNAs (miRNAs) have been associated with carcinogenesis in many tumors and may function as tumor suppressor or oncogene. In this study we examined miRNA expression in an initial series of 57 human liposarcomas (including all subtypes), lipomas and normal fat by miRNA microarrays. Supervised hierarchical clustering of the most differentially expressed miRNAs (p<0.0002) distinguished most liposarcoma subtypes and control tissues. The distinction between well differentiated liposarcomas and benign lipomas was blurred, suggesting these tumor types may represent a biological continuum. MiRNA signatures of liposarcoma subtypes were established and validated in an independent series of 58 liposarcomas and control tissues. The expression of the miR-143/145 and miR-144/451 cluster members was clearly reduced in liposarcomas compared to normal fat. Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreased cellular proliferation rate, impaired cell cycle progression and induced apoptosis. In conclusion, we show that miRNA expression profiling can be used to discriminate liposarcoma subtypes, which could aid in objective diagnostic decision making. In addition, our data indicate that miR-145 and miR-451 act as tumor suppressors in adipose tissue and show that re-expression of these miRNAs could be a promising therapeutic strategy for liposarcomas.
Project description:Liposarcomas are rare, heterogeneous and malignant tumors that can be divided into five histological subtypes with different characteristics and clinical behavior. Treatment consists of surgery in combination with systemic chemotherapy, but nevertheless mortality rates are high. More insight into the biology of liposarcoma tumorigenesis is needed to devise novel therapeutic approaches. MicroRNAs (miRNAs) have been associated with carcinogenesis in many tumors and may function as tumor suppressor or oncogene. In this study we examined miRNA expression in an initial series of 57 human liposarcomas (including all subtypes), lipomas and normal fat by miRNA microarrays. Supervised hierarchical clustering of the most differentially expressed miRNAs (p<0.0002) distinguished most liposarcoma subtypes and control tissues. The distinction between well differentiated liposarcomas and benign lipomas was blurred, suggesting these tumor types may represent a biological continuum. MiRNA signatures of liposarcoma subtypes were established and validated in an independent series of 58 liposarcomas and control tissues. The expression of the miR-143/145 and miR-144/451 cluster members was clearly reduced in liposarcomas compared to normal fat. Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreased cellular proliferation rate, impaired cell cycle progression and induced apoptosis. In conclusion, we show that miRNA expression profiling can be used to discriminate liposarcoma subtypes, which could aid in objective diagnostic decision making. In addition, our data indicate that miR-145 and miR-451 act as tumor suppressors in adipose tissue and show that re-expression of these miRNAs could be a promising therapeutic strategy for liposarcomas.