Project description:To reveal genetic determinants of susceptibility to COVID-19 severity in the population and further explore potential immune-related factors, we performed a genome-wide association study on 284 confirmed COVID-19 patients (cases) and 95 healthy individuals (controls). We compared cases and controls of European (EUR) ancestry and African American (AFR) ancestry separately. To further exploring the linkage between HLA and COVID-19 severity, we applied fine-mapping analysis to dissect the HLA association with mild and severe cases.
Project description:Although most SARS-CoV-2-infected individuals experience mild COVID-19, some patients suffer from severe COVID-19, which is accompanied by acute respiratory distress syndrome and systemic inflammation. To identify factors driving severe progression of COVID-19, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from healthy donors, patients with mild or severe COVID-19, and patients with severe influenza. Patients with COVID-19 exhibited hyper-inflammatory signatures across all types of cells among PBMCs, particularly upregulation of the TNF/IL-1beta-driven inflammatory response as compared to severe influenza. In classical monocytes from patients with severe COVID-19, type I IFN response co-existed with the TNF/IL-1beta-driven inflammation, and this was not seen in patients with milder COVID-19 infection. Based on this, we propose that the type I IFN response exacerbates inflammation in patients with severe COVID-19 infection.
Project description:Manuscript describes the daily dynamics of transcriptional responses in whole blood, from acute to convalescent phase, in severe and non-severe COVID-19 patients.
Project description:While critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during COVID-19 ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using scRNA-seq and plasma proteomics, we discovered that compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin (PG) signalling. Dexamethasone during severe COVID-19 depleted circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated gene, and activated IL1R2+ve neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils, preferential steroid-induced immature neutrophil expansion, and possibly different effects on outcome. Our single-cell atlas (www.biernaskielab.ca/COVID_neutrophil) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
Project description:Respiratory failure in COVID-19 is characterized by widespread disruption of the lung’s alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18-92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased peri-alveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there is also progressive loss of T2AE with increasing age which may increase susceptibility to COVID-19 mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that express distinctly high levels of T-cell activation and co-stimulation genes and strongly correlate with increased extent of alveolar epithelial cell depletion and CD8 T-cell cytotoxicity. Together, our results show that T2AE deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection; and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.
Project description:Many clinical risk factors for severe COVID-19, such as diabetes, hypertension, and high body mass index have been reported. However, searching for additional risk factors should be continued to predict the progression of severe COVID-19 more accurately. We suppose that clonal hematopoiesis of indeterminate potential (CHIP) can also be regarded as one of risk factors. To identify the influence of CHIP in COVID-19 pathogenesis, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from severe COVID-19 patient with CHIP and integrate the data with other published COVID-19 scRNA seq data (GSE149689). After clustering and annotating cell types, we compare the expression profiles between CHIP vs non-CHIP COVID-19 severe patient.
Project description:The clinical course of Coronavirus disease 2019 (COVID-19) displays a wide variability, ranging from completely asymptomatic forms to diseases associated with severe clinical outcomes. To reduce the incidence COVID-19 severe outcomes, innovative molecular biomarkers are needed to improve the stratification of patients at the highest risk of mortality and to better customize therapeutic strategies. MicroRNAs associated with COVID-19 outcomes could allow quantifying the risk of severe outcomes and developing models for predicting outcomes, thus helping to customize the most aggressive therapeutic strategies for each patient. Here, we analyzed the circulating miRNA profiles in a set of 12 hospitalized patients with severe COVID-19, with the aim to identify miRNAs associated with in-hospital mortality.
Project description:The objective of this experiment was to compare the transcriptomic profile (NanoString platform) of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild disease, and patients with severe COVID-19 with and without dexamethasone treatment, and healthy controls. We analyzed PBMCs from 4 mild COVID patients, 3 severe COVID patients,4 severe COVID patients treated with dexamethasone, and 5 healthy controls