Project description:Chronic exposure to inorganic arsenic (iAs) has been linked to an increased risk of diabetes, yet the specific disease phenotype and underlying mechanisms are poorly understood. In the present study we set out to identify iAs exposure-associated metabolites with altered abundance in nondiabetic and diabetic individuals in an effort to understand the relationship between exposure, metabolomic response, and disease status. A nested study design was used to profile metabolomic shifts in urine and plasma collected from 90 diabetic and 86 nondiabetic individuals matched for varying iAs concentrations in drinking water, body mass index, age, and sex. Diabetes diagnosis was based on measures of fasting plasma glucose and 2-h blood glucose. Multivariable models were used to identify metabolites with altered abundance associated with iAs exposure among diabetic and nondiabetic individuals. A total of 132 metabolites were identified to shift in urine or plasma in response to iAs exposure characterized by the sum of iAs metabolites in urine (U-tAs). Although many metabolites were altered in both diabetic and nondiabetic 35 subjects, diabetic individuals displayed a unique response to iAs exposure with 59 altered metabolites including those that play a role in tricarboxylic acid cycle and amino acid metabolism. Taken together, these data highlight the broad impact of iAs exposure on the human metabolome, and demonstrate some specificity of the metabolomic response between diabetic and nondiabetic individuals. These data may provide novel insights into the mechanisms and phenotype of diabetes associated with iAs exposure.
Project description:The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n = 40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 µg/L (mean = 51.7 µg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 µg/L (mean = 64.5 µg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations. We assessed the impact of prenatal exposure to arsenic on genome-wide miRNA expression profiles and their potential influence on gene expression patterns in the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort. This cohort includes residents from Gómez Palacio, located in the state of Durango in the Lagunera region of Northern Mexico. A total of 200 pregnant women residing in Gómez Palacio, State of Durango, Mexico, were recruited at the General Hospital of Gómez Palacio to participate in the BEAR prospective pregnancy cohort. The present study focuses on miRNA expression profiles and utilizes 40 samples obtained from mother-newborn pairs selected from the larger cohort (n=200). The subcohort was selected to include subjects exposed to varying levels of arsenic as determined by both total arsenic in maternal urine (U-tAs) and inorganic arsenic in drinking water (DW-iAs). Cord blood samples were collected from the newborns immediately after infant delivery. Blood samples were collected using PreAnalytix PaxGene RNA tubes and extracted using the PAXgene RNA Kit, per standard protocol (Qiagen, Valencia, CA). Isolated RNA used for microarray analysis were amplified and labeled using the NuGEN Ovation Pico WTA System V2 and Encore Biotin Module, respectively (NuGEN, San Carlos, CA). RNA isolated from 40 cord blood samples were labeled and hybridized to the Agilent Human miRNA Microarray, based off miRBase v16.0.
Project description:The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n = 40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 µg/L (mean = 51.7 µg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 µg/L (mean = 64.5 µg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations. We assessed the impact of prenatal exposure to arsenic on genome-wide miRNA expression profiles and their potential influence on gene expression patterns in the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort. This cohort includes residents from Gómez Palacio, located in the state of Durango in the Lagunera region of Northern Mexico. A total of 200 pregnant women residing in Gómez Palacio, State of Durango, Mexico, were recruited at the General Hospital of Gómez Palacio to participate in the BEAR prospective pregnancy cohort. The present study focuses on gene expression profiles and utilizes 38 samples obtained from mother-newborn pairs selected from the larger cohort (n=200). The subcohort was selected to include subjects exposed to varying levels of arsenic as determined by both total arsenic in maternal urine (U-tAs) and inorganic arsenic in drinking water (DW-iAs). Cord blood samples were collected from the newborns immediately after infant delivery. Blood samples were collected using PreAnalytix PaxGene RNA tubes and extracted using the PAXgene RNA Kit, per standard protocol (Qiagen, Valencia, CA). Isolated RNA used for microarray analysis were amplified and labeled using the NuGEN Ovation Pico WTA System V2 and Encore Biotin Module, respectively (NuGEN, San Carlos, CA). RNA isolated from 38 cord blood samples were labeled and hybridized to the Affymetrix Human Gene 2.0 ST Array.
Project description:There is strong epidemiologic evidence supporting that exposure to inorganic arsenic (iAs) exposure is responsible for a myriad of adverse health effects, including carcinogenesis of the bladder. This research aimed to identify novel epigenetic biomarkers of iAs exposure in target cells within a human population. Here we assessed genome-wide, gene-specific promoter DNA methylation levels assessed in exfoliated human bladder uroepithelial cells (BECs) in relationship to BEC iAs, monomethylated As (MMAs), dimethylated As (DMAs), and total As (tAs) concentrations from 46 individuals with varying levels of As exposure in Chihuahua, Mexico. These analyses identified genes with increased methylation associated with BEC iAs(III+V), MMAs(III+V), and tAs(III+V). These genes were enriched for signaling related to metabolic disease and cancer.
Project description:The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n = 40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 µg/L (mean = 51.7 µg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 µg/L (mean = 64.5 µg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations.
Project description:The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n = 40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 µg/L (mean = 51.7 µg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 µg/L (mean = 64.5 µg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations.
Project description:This SuperSeries is composed of the following subset Series: GSE21321: Blood microRNA profiles and upregulation of hsa-miR-144 in males with type 2 diabetes mellitus. GSE26167: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in Type 2 Diabetes mellitus Refer to individual Series
Project description:Diabetes mellitus (DM) after transplantation remains a crucial clinical problem in kidney transplantation. To obtain insights into molecular mechanisms underlying the development of post-transplant diabetes mellitus (PTDM) and its early impact on glomerular structures, here we comparatively analyze the proteome of histologically normal appearing glomeruli from patients with PTDM from normoglycemic (NG) transplant recipients, and from recipients with pre-existing type 2 DM (PTDM)