Project description:In Crohn's disease, creeping fat is the characteristic expansion of mesenteric adipose tissue wrapping around the inflamed intestine. Through a comparative transcriptomic analysis of creeping fat and normal-looking mesenteric adipose tissues from patients with Crohn's disease and non-Crohn's disease, we found that a dynamic transcriptional and cell compositional change occurs during the progression from non-Crohn's disease to Crohn's disease, and finally to creeping fat.
Project description:MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. Therefore, we employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in Hibiscus syriacus. Collectively, this study provides the first reliable draft of the Hibiscus syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in Hibiscus syriacus.
2017-09-08 | GSE99329 | GEO
Project description:Terpene synthase gene amplicons from subseafloor sediments
Project description:UV-A mediated regulation of anthocyanin biosynthesis was investigated in swollen hypocotyls of the red turnip ‘Tsuda’. The shaded swollen hypocotyls which contained negligible anthocyanin were exposed to artificial light sources including low fluence UV-B, UV-A, blue, red, far-red, red plus UV-A, far-red plus UV-A, and blue plus red. Among these lights, only UV-A induced anthocyanin biosynthesis and co-irradiation of red or far-red with UV-A did not affect the extent of UV-A induced anthocyanin accumulation. The expression of phenylalanine ammonia lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), flavanon 3-hydrocylase (F3H; EC 1.14.11.9), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219) and anthocyanidin synthase (ANS; EC 1.14.11.-) genes were increased with time during a 24 hour exposure of UV-A. In contrast, irradiation of red, blue, UV-B, and a combination of blue with red failed to induce CHS expression. Microarray analysis showed that only a few genes, including chalcone synthase and flavanon 3-hydroxylase were induced significantly by UV-A, while a separate set of many genes was induced by low fluence UV-B. The UV-A specific induction of anthocyanin biosynthesis and the unique gene expression profile upon UV-A irradiation as compared with blue and UV-B demonstrated that the observed induction of anthocyanin biosynthesis in red turnips was mediated by a distinct UV-A specific photoreceptor, but not by phytochromes, UV-A/blue photoreceptors, or UV-B photoreceptors. Keywords: light response
Project description:<p><strong>BACKGROUND:</strong> Plants exhibit wide chemical diversity due to the production of specialized metabolites that function as pollinator attractants, defensive compounds, and signaling molecules. Lamiaceae (mints) are known for their chemodiversity and have been cultivated for use as culinary herbs, as well as sources of insect repellents, health-promoting compounds, and fragrance.</p><p><strong>FINDINGS:</strong> We report the chromosome-scale genome assembly of Callicarpa americana L. (American beautyberry), a species within the early-diverging Callicarpoideae clade of Lamiaceae, known for its metallic purple fruits and use as an insect repellent due to its production of terpenoids. Using long-read sequencing and Hi-C scaffolding, we generated a 506.1-Mb assembly spanning 17 pseudomolecules with N50 contig and N50 scaffold sizes of 7.5 and 29.0 Mb, respectively. In all, 32,164 genes were annotated, including 53 candidate terpene synthases and 47 putative clusters of specialized metabolite biosynthetic pathways. Our analyses revealed 3 putative whole-genome duplication events, which, together with local tandem duplications, contributed to gene family expansion of terpene synthases. Kolavenyl diphosphate is a gateway to many of the bioactive terpenoids in C. americana; experimental validation confirmed that CamTPS2 encodes kolavenyl diphosphate synthase. Syntenic analyses with Tectona grandis L. f. (teak), a member of the Tectonoideae clade of Lamiaceae known for exceptionally strong wood resistant to insects, revealed 963 collinear blocks and 21,297 C. americana syntelogs.</p><p><strong>CONCLUSIONS:</strong> Access to the C. americana genome provides a road map for rapid discovery of genes encoding plant-derived agrichemicals and a key resource for understanding the evolution of chemical diversity in Lamiaceae.</p>