Project description:Identification of target transcripts for the putative chloroplast RNA binding protein CFM2 in Zea mays. CFM2 was immunoprecipitated from a chloroplast extract. Chloroplast extracts were prepared from WT tissue. RNA from the pellet and from the supernatant for each pulldown was labelled with different fluoro-dyes and hybridized onto an array covering the complete maize chloroplast genome. Messages enriched in the immunoprecipitate from WT tissue are likely targets for CFM2.
Project description:Identification of target transcripts for the putative chloroplast RNA binding protein CRP1 in Zea mays. CRP1 was immunoprecipitated from a chloroplast extract. Chloroplast extracts were prepared from WT and CRP1-deficient tissue. RNA from the pellet and from the supernatant for each pulldown was labelled with different fluoro-dyes and hybridized onto an array covering the complete maize chloroplast genome. Messages enriched in the immunoprecipitate from WT tissue, but not enriched in mutant tissue are likely targets for CRP1.
Project description:The aim of this study is to identify alterations induced in gastric mucosa of mice exposed to Pteridium aquilinum and/or infected with Helicobacter pylori, in order to identify genes that are induced by bracken fern exerts exacerbating effects on gastric lesions associated to the infection. Six groups of C57Bl/6 mice were be used: 1) control, 2) infected Helicobacter pylori, 3) treated with Bracken fern extract orogastrically, 4) treated with Bracken fern extract in drinking water, 5) infected Helicobacter pylori + treated with Bracken fern extract orogastrically, 6) infected Helicobacter pylori + treated with Bracken fern extract in drinking water. The infection procedure was performed using an orogastric inoculation of H.pylori (strain SS1) twice in the first week. The RNA isolation was done in triplicate (3 mice per each condition). Further evaluation of morphological alterations on gastric mucosa, proliferative index and induction of DNA strand breaks will be performed in the mice stomach exposed to Pteridium aquilinum infected or not with Helicobacter pylori. Alterations of glycosylation in gastric tissues will also evaluated.
Project description:Protein secretion into extracellular space is an important virulence mechanism both among Gram negative and Gram-positive bacteria. Prevotella intermedia, an important species associated with periodontitis, is known to be resistant to several antibiotics. Since P. intermedia is a part of normal oral microbiota, its complete elimination is not possible. Despite the remarkable clinical significance P. intermedia has, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. Proteins in the secretome preparations were identified by nanoLC-ESI-MS/MS. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Proteins with predicted virulence potential were 39 in biofilm and 44 in planktonic secretomes, respectively. Gene ontology analysis revealed that the biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process, protein binding and methyltransferase and kinase activities. In conclusion, this study revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes. This may set a basis for asking further questions into molecular mechanisms how this species exerts its virulence potential in the oral cavity.