Project description:Armillaria species are devastating forest pathogens that are among the largest terrestrial organisms on Earth. They explore hosts and achieve immense colony sizes by rhizomorphs, root-like multicellular structures of clonal dispersal. To resolve the genetic bases of their unique biology, we sequenced and analyzed genomes of 4 Armillaria species and performed RNA-Seq on 7 invasive and reproductive developmental stages. Comparison with 22 basidiomycete fungi revealed a significant genome expansion in Armillaria, affecting several pathogenicity-related genes, lignocellulose degrading enzymes and lineage-specific genes involved in rhizomorph development. Rhizomorphs express an evolutionarily young transcriptome and share their morphogenetic machinery with fruiting bodies, providing genetic and regulatory insights into complex multicellularity in fungi. Our results suggest that the evolution of the unique dispersal and pathogenicity mechanisms of Armillaria has drawn upon ancestral genetic toolkits for wood-decay, morphogenesis and complex multicellularity.
Project description:During mycoparasitism, a fungus—the host—is parasitized by another fungus—the mycoparasite. The genetic underpinnings of these relationships have been best characterized in Ascomycete fungi. However, within Basidiomycete fungi, there are rare instances of mushroom-forming species parasitizing the reproductive structures, or sporocarps, of other mushroom-forming species. One of the most enigmatic of these occurs between Entoloma abortivum and species of Armillaria, where hyphae of E. abortivum are hypothesized to disrupt the development of Armillaria sporocarps, resulting in the formation of carpophoroids. However, it remains unknown whether carpophoroids are the direct result of a mycoparasitic relationship. To address the nature of this unique interaction, we analyzed gene expression of field-collected Armillaria and E. abortivum sporocarps and carpophoroids. Transcripts in the carpophoroids are primarily from E. abortivum, supporting the hypothesis that this species is parasitizing Armillaria. Most notably, we identified differentially expressed E. abortivum β-trefoil-type lectins in the carpophoroid, which we hypothesize bind to Armillaria cell wall galactomannoproteins, thereby mediating recognition between the mycoparasite and the host. The most significantly upregulated E. abortivum transcripts in the carpophoroid code for oxalate decarboxylases—enzymes that degrade oxalic acid. Oxalic acid is a virulence factor in many plant pathogens, including Armillaria species, however, E. abortivum has evolved a sophisticated strategy to overcome this defense mechanism. The number of gene models and genes that code for carbohydrate-active enzymes in the E. abortivum transcriptome were reduced compared to other closely related species, perhaps as a result of the specialized nature of this interaction.