Project description:<p>Chronic sleep loss profoundly impacts metabolic health and shortens lifespan, but studies of the mechanisms involved have focused largely on acute sleep deprivation. To identify metabolic consequences of chronically reduced sleep, we conducted unbiased metabolomics on heads of three adult Drosophila short-sleeping mutants with very different mechanisms of sleep loss: fumin (fmn), redeye (rye), and sleepless (sss). Common features included elevated ornithine and polyamines, with lipid, acyl-carnitine, and TCA cycle changes suggesting mitochondrial dysfunction. Studies of excretion demonstrate inefficient nitrogen elimination in adult sleep mutants, likely contributing to their polyamine accumulation. Increasing levels of polyamines, particularly putrescine, promote sleep in control flies but poison sleep mutants. This parallels the broadly enhanced toxicity of high dietary nitrogen load from protein in chronically sleep-restricted Drosophila, including both sleep mutants and flies with hyper-activated wake-promoting neurons. Together, our results implicate nitrogen stress as a novel mechanism linking chronic sleep loss to adverse health outcomes-and perhaps for linking food and sleep homeostasis at the cellular level in healthy organisms.</p>
Project description:Spermiogenesis in Drosophila melanogaster is a highly conserved process and essential for male fertility. In this haploid phase of spermatogenesis, motile sperm are assembled from round cells, flagella are assembled, and needle-shaped nuclei with highly compacted genomes are formed. We aimed at identifying proteins relevant for the maturation phase from spermatids to sperm. As transcription takes place mainly in spermatocytes, and transcripts with relevance for post-meiotic sperm development are translationally repressed for days, we comparatively analysed the prote-ome of larval testes (stages before meiotic divisions), of testes of 1–2-day-old pupae (meiotic and early spermatid stages) and adult flies (late spermatids and sperm). We identified 6677 pro-teins, with 422 solely detected in larval testes, 623 in pupal testes and 634 in adult testes. We analysed a few so far uncharacterized proteins with repect to stage specific expression and im-portance for male fertility. For example, Mst84B (gene CG1988), a very basic cysteine- and lysine-rich nuclear protein, was present in the phase of transition from a histone-based to a pro-tamine-based chromatin structure. CG6332 encodes d-Theg, which is related to the mouse tHEG and human THEG proteins. Mutants of d-Theg lacked sperm in the seminal vesicles and were sterile. The identification of numerous predicted proteins underscores the high potential of pro-teome analysis for future analyses of spermatogenesis.
Project description:While microRNAs (miRNAs) have recently emerged as critical post-transcriptional modulators of gene expression in neuronal development, very little is known regarding the roles of miRNA-mediated regulation in the specification of cell-type specific dendritic complexity. The dendritic arborization (da) sensory neurons of the Drosophila PNS offer an excellent model system for elucidating the molecular mechanisms governing class specific dendrite morphogenesis and for exploring miRNA-mediated control of this process. To facilitate functional analyses of miRNA regulation in da neurons, we have conducted whole-genome miRNA expression profiling as well as mRNA expression profiling of three distinct classes of da neurons, thereby generating a comprehensive molecular gene expression signature within these individual subclasses of da neurons. To further validate the role of these expressed miRNAs in directing dendritic architecture, we conducted a genome-wide UAS-miRNA phenotypic screen using live-image confocal microscopy followed by semi-automated neurometric quantification, to directly assess the effect of over/mis-expression of individual and clustered miRNAs on neurons of varying dendritic complexity. Through this approach, we have identified numerous miRNAs with previously unknown functions in dendritic development. Gain-of-function and loss-of-function analyses revealed an endogenous role miR-2b and miR-13b (members of the K-box family) and miR-12/283/304 in dendritic patterning in da neuron subclasses. Moreover, using an integrative bioinformatic analysis approach involving inverse correlation between miRNA and mRNA expression profiling data in combination with existing target prediction algorithms, we have identified putative target of these miRNAs in regulating da neuron dendritic development. Validation of these predicted miRNA-target relationships via phenotypic analyses as well as QPCR, revealed the regulatory effect of these molecules in restricting dendritic branching in da neurons.