Project description:Castanopsis fissa is an evergreen broad-leaved species of the cone genus Castanopsis in the family Fagaceae, which is widely distributed and is an excellent native species in Guangdong Province of China. This species has a well-developed root system, excellent soil-fixing power, and better soil and water conservation ability and has the characteristics of barren tolerance, strong sprouting power, abundant and easily decomposed dead leaves, etc. Therefore, C. fissa is not only a pioneer species for postdestruction sprouting forests but also a highly potential ecological public welfare forest tree species. Moreover, due to its beautiful shape, wide canopy and various colors, it has become an ideal tree for landscaping and ornamental purposes. However, there is a basic gap in knowledge in the reports on the drought resistance or drought tolerance genes of C. fissa. Based on the above details, in this study, 2-year-old C. fissa seedlings were used as the study material to investigate the physiological response under drought stress by a potted drought experiment, and we also compared and analyzed the differentially expressed proteins (DEPs) under different periods of drought stress by TMT quantitative labeling protein to prepare a preliminary study on the physiological response and proteomic mechanism of C. fissa adaptation to drought stress.
2023-07-24 | PXD038837 | Pride
Project description:RADseq for Quercus humboldtii (Fagaceae: Quercus)
Project description:In the family Fagaceae, fertilization is delayed by several weeks to more than one year after pollination, leading to one- or two-year fruiting species depending on whether fruiting occurs in the same or the next year of flowering. Although delayed fertilization was recorded over a century ago, underlying mechanisms remain to be explored. To uncover the key genes associated with delayed fertilization, we obtain and analyze the comparative molecular phenology data over two years in one-year (Quercus glauca) and two-year fruiting species (Lithocarpus edulis).
Project description:In the family Fagaceae, fertilization is delayed by several weeks to more than one year after pollination, leading to one- or two-year fruiting species depending on whether fruiting occurs in the same or the next year of flowering. Although delayed fertilization was recorded over a century ago, underlying mechanisms remain to be explored. To uncover the key genes associated with delayed fertilization, we obtain and analyze the comparative molecular phenology data over two years in one-year (Quercus glauca) and two-year fruiting species (Lithocarpus edulis).
Project description:This work aimed to characterize the molecular adaptations occurring in cork oak (Quercus suber) stems in adaptation to drought, and identify key genetic pathways regulating phellem development. One-year-old cork oak plants were grown for additional 6 months under well-watered (WW) or water-deficit (WD) conditions and main stems were targeted for transcriptomic analysis. WD had a negative impact on secondary growth, decreasing the activity of the vascular cambium and phellogen. Following a tissue-specific approach, we analyzed the transcriptional changes imposed by WD in phellem (outer bark), inner bark, and xylem, and found a global downregulation of genes related to cell division, cell wall biogenesis, lignin and/or suberin biosynthesis. Phellem and phloem showed a concerted upregulation of photosynthesis-related genes, suggesting a determinant role of stem photosynthesis in the adaptation of young plants to long-term drought. The data gathered will be important to further harness the diverse genetic background of this species for the development of optimized management practices.
Project description:Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we studied the processes of N remobilization from mature to senescing citrus leaves under low and high N nutrition.
Project description:Applying a gel-based proteomic approach, the dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and subjected to two-dimensional electrophoresis. Coomassie colloidal stained gel images were analysed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in the three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS). For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Taxonomy Holm oak (Quercus ilex subsp. Ballota [Desf.] Samp.). Dentro de Q. ilex hay dos subespecies, ilex ilex e ilex Ballota.
Project description:Holm oak (Quercus ilex) is the most important and representative specie of the Mediterranean forest and of the Spanish agrosilvo-pastoral ecosystem “Dehesa”. Despite its environmental and economic interest, Holm oak is still an orphan species whose biology is very little known, especially at the molecular level. In this research, we have performed a shotgun proteomic approach (nLC-MSMS, Orbitrap) to analyze the Holm oak proteome, using, as starting material, a pool generated by mixing equal amounts of homogenized tissue, including embryo, cotyledons (from mature acorns), and leaves and roots (from 6-month old plantlets grown in a greenhouse under environmental conditions). The proteome generated will be the bases of further studies on population variability, growth, development and responses to stresses in this species.