Project description:The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and play a significant role in mate choice in many species. However, it remains unclear whether female mate choice in non-human primates is based on specific functional genes and/or genome-wide genes. The golden snub-nosed monkey (Rhinopithecus roxellana) lives in a multilevel society, which consists of several polygynous one-male-several-female units. Although adult females tend to mainly socialize with one adult male, females often initiate extra-pair copulations with other males resulting in a high proportion of offspring being fathered by extra-pair males. We investigated the effects of adaptive MHC genes and neutral microsatellites on female mate choice in a wild R. roxellana population. We sequenced 54 parent-offspring triads using two MHC class II loci (Rhro-DQA1 and Rhro-DQB1) and 20 microsatellites from 3 years of data. We found that the paternities of offspring were non-randomly associated with male MHC compositions not microsatellite genotypes. Our study showed that the fathers of all infants had significantly less variance for several estimates of genetic similarity to the mothers compared with random males at both MHC loci. Additionally, the MHC diversity of these fathers was significantly higher than random males. We also found support for choice based on specific alleles; compared with random males, Rhro-DQA1∗ 05 and Rhro-DQB1∗ 08 were more common in both the OMU (one-male unit) males and the genetic fathers of offspring. This study provides new evidence for female mate choice for MHC-intermediate dissimilarity (rather than maximal MHC dissimilarity) and highlights the importance of incorporating multiple MHC loci and social structure into studies of MHC-based mate choice in non-human primates.
Project description:BackgroundEndogenous retroviruses (ERV) are remnants of former exogenous retroviruses that had previously invaded the germ line of the host that can be vertically transmitted across generations. While the majority of ERVs lack infectious capacity due to the accumulation of deleterious mutations, some ERVs remain active and produce potentially infectious viral particles. ERV sequences have been reported in all mammals; however, the distribution and diversity of ERVs in several primate taxa remains unclear. The aim of this study was to identify and classify the ERV sequences in the genomes of the golden snub-nosed monkey (Rhinopithecus roxellana) and the black and white snub-nosed monkey (Rhinopithecus bieti), two endangered primate species that exploit high altitude (2,500-4,500 m) temperate forests in southern and central China.MethodsWe used a TBLASTN program to search the ERV sequences of golden snub-nosed monkey genome and the black and white snub-nosed monkey genome. We retrieved all complete accession sequences from the homology search and then used the program, RetroTector, to check and identify the ERV sequences.ResultsWe identified 284 and 263 endogenous retrovirus sequences in R. roxellana and R. bieti respectively. The proportion of full-length sequences of all ERV was 30% in R. roxellana and 21% in R. bieti and they were described as class I and class II or gamma-retrovirus and beta-retrovirus genera. The truncation pattern distribution in the two species was virtually identical. By analyzing and comparing ERV orthologues among 6 primate species, we identified the co-evolution of ERVs with their host. We also examined ERV-like sequences and found 48 such genes in R. roxellana and 63 in R. bieti. Some of those genes are associated with diseases, suggesting that ERVs might have involved the abnormal expression of certain genes that have contributed to deleterious consequences for the host.ConclusionsOur results indicate that ERV sequences are widely distributed in snub-nosed monkeys, and their phylogenetic history can mirror that of their hosts over long evolutionary time scales. In addition, ERV sequences appear to have an important influence on the evolution of host pathology.
Project description:Many threatened species have undergone range retraction, and are confined to small fragmented populations. To increase their survival prospects, it is necessary to find suitable habitat outside their current range, to increase and interconnect populations. Species distribution models may be used to this purpose and can be an important part of the conservation strategies. One pitfall is that such mapping will typically assume that the current distribution represents the optimal habitat, which may not be the case for threatened species. Here, we use maximum entropy modelling (Maxent) and rectilinear bioclimatic envelope modelling with current and historical distribution data, together with the location of protected areas, and environmental and anthropogenic variables, to answer three key questions for the conservation of Rhinopithecus, a highly endangered genus of primates consisting of five species of which three are endemic to China, one is endemic to China and Myanmar and one is endemic to Vietnam; Which environmental variables best predict the distribution? To what extent is Rhinopithecus living in an anthropogenically truncated niche space? What is the genus' potential distribution in the region? Mean temperature of coldest and warmest quarter together with annual precipitation and precipitation during the driest quarter were the variables that best explained Rhinopithecus' distribution. The historical records were generally in warmer and wetter areas and in lower elevation than the current distribution, strongly suggesting that Rhinopithecus today survives in an anthropogenic truncated niche space. There is 305,800-319,325 km2 of climatic suitable area within protected areas in China, of which 96,525-100,275 km2 and 17,175-17,550 km2 have tree cover above 50 and 75%, respectively. The models also show that the area predicted as climatic suitable using Maxent was 72-89% larger when historical records were included. Our results emphasise the importance of considering historical records when assessing restoration potential and show that there is high potential for restoring Rhinopithecus to parts of its former range.
Project description:IntroductionSnub-nosed monkeys are species in danger of extinction due to habitat fragmentation and human activities. Captivity has been suggested as an Auxiliary Conservation Area (ASA) strategy. However, little is known about the adaptation of different species of snub-nosed monkeys to captive environments.MethodsThis study compared the gut microbiota between Rhinopithecus bieti, R. brelichi, and R. roxellana under identical captive conditions to provide insights for improving captive conservation strategies.ResultsThe results showed that these three Rhinopithecus species shared 80.94% of their Operational Taxonomic Unit (OTU), indicating high similarity in gut microbiota composition. The predominant phyla were Firmicutes and Bacteroidetes for all three Rhinopithecus species, but differences were observed in diversity, characteristic bacterial communities, and predicted function. Significant enrichment of cellulolytic families, including Ruminococcaceae, Clostridiales vadinBB60 group, Christensenellaceae, and Erysipelotrichaceae, and pathways involved in propionate and butyrate metabolism in the gut of R. bieti suggested that it may have a superior dietary fiber utilization capacity. In contrast, Bacteroidetes, Ruminoccaceae, and Trichospiraceae were more abundant in R. brelichi and R. roxellana, and were associated with saccharide and glycan metabolic pathways. Moreover, R. brelichi and R. roxellana also had higher similarity in microbiota composition and predicted function.DiscussionIn conclusion, the results demonstrate that host species are associated with the composition and function of the gut microbiota in snub-nosed monkeys. Thus, host species should be considered when formulating nutritional strategies and disease surveillance in captive snub-nosed monkeys.
Project description:Odd-nosed monkeys represent one of the two major groups of Asian colobines. Our knowledge about this primate group is still limited as it is highlighted by the recent discovery of a new species in Northern Myanmar. Although a common origin of the group is now widely accepted, the phylogenetic relationships among its genera and species, and the biogeographic processes leading to their current distribution are largely unknown. To address these issues, we have analyzed complete mitochondrial genomes and 12 nuclear loci, including one X chromosomal, six Y chromosomal and five autosomal loci, from all ten odd-nosed monkey species. The gene tree topologies and divergence age estimates derived from different markers were highly similar, but differed in placing various species or haplogroups within the genera Rhinopithecus and Pygathrix. Based on our data, Rhinopithecus represent the most basal lineage, and Nasalis and Simias form closely related sister taxa, suggesting a Northern origin of odd-nosed monkeys and a later invasion into Indochina and Sundaland. According to our divergence age estimates, the lineages leading to the genera Rhinopithecus, Pygathrix and Nasalis+Simias originated in the late Miocene, while differentiation events within these genera and also the split between Nasalis and Simias occurred in the Pleistocene. Observed gene tree discordances between mitochondrial and nuclear datasets, and paraphylies in the mitochondrial dataset for some species of the genera Rhinopithecus and Pygathrix suggest secondary gene flow after the taxa initially diverged. Most likely such events were triggered by dramatic changes in geology and climate within the region. Overall, our study provides the most comprehensive view on odd-nosed monkey evolution and emphasizes that data from differentially inherited markers are crucial to better understand evolutionary relationships and to trace secondary gene flow.
Project description:Diarrhea is often associated with marked alterations in the intestinal microbiota, termed dysbiosis; however, limited information is currently available on the intestinal microbiota in captive golden snub-nosed monkeys (Rhinopithecus roxellana) with diarrhea. We herein characterized the fecal microbiota in diarrhea and healthy monkeys using the Illumina MiSeq platform. The concentrations of fecal short-chain fatty acids (SCFAs) and copy numbers of virulence factor genes were also assessed using gas chromatography and quantitative PCR (qPCR), respectively. The results obtained showed that diarrhea monkeys harbored a distinctive microbiota from that of healthy monkeys and had 45% fewer Bacteroidetes. Among healthy subjects, old monkeys had the lowest relative abundance of Bacteroidetes. Linear discriminant analysis coupled with the effect size (LEfSe) and canonical correlation analysis (CCA) identified significant differences in microbial taxa between diarrhea and healthy monkeys. A PICRUSt analysis revealed that several pathogenic genes were enriched in diarrhea monkeys, while glycan metabolism genes were overrepresented in healthy monkeys. A positive correlation was observed between the abundance of nutrition metabolism-related genes and the individual digestive capacities of healthy monkeys. Consequently, the abundance of genes encoding heat stable enterotoxin was significantly higher in diarrhea monkeys than in healthy monkeys (P<0.05). In healthy subjects, adult monkeys had significant higher concentrations of butyrate and total SCFAs than old monkeys (P<0.05). In conclusion, the present study demonstrated that diarrhea had a microbial component and changes in the microbial structure were accompanied by altered systemic metabolic states. These results suggest that pathogens and malabsorption are the two main causes of diarrhea, which are closely related to the microbial structure and functions.
Project description:Tactical deception can be beneficial for social animals during intra-specific competition. However, the use of tactical deception in wild mammals is predicted to be rare. We tested whether a food-provisioned free-ranging band of golden snub-nosed monkeys (Rhinopithecus roxellana) use alarm calls in a functionally deceptive manner to gain access to food resources, whether the rate of deceptive alarm calls varies among individuals, and whether there are any counter-deception behaviors. We used a hexagonal camera array consisting of 10 cameras to record videos during feeding, which allowed us to identify individual alarm callers. We found evidence that these monkeys use deceptive alarms and that adult females were more likely to use such calls than other individuals. The monkeys increased their rates of response to alarm calls when competition for food was high. However, we found no direct evidence of any counter-deception strategies.
Project description:BackgroundAdenoviruses are important pathogens with the potential for interspecies transmission between humans and non-human primates. Although many adenoviruses have been identified in monkeys, the knowledge of these viruses from the Colobinae members is quite limited.FindingsWe conducted a surveillance of viral infection in endangered golden snub-nosed monkeys (Rhinopithecus roxellana) in the subfamily Colobinae in China, and found that 5.1% of sampled individuals were positive for adenovirus. One of the adenoviruses (SAdV-WIV19) was successfully isolated and its full-length genome was sequenced. The full-length genome of WIV19 is 33,562 bp in size, has a G + C content of 56.2%, and encodes 35 putative genes. Sequence analysis revealed that this virus represents a novel species in the genus Mastadenovirus. Diverse cell lines, including those of human origin, were susceptible to WIV19.ConclusionWe report the first time the isolation and full-length genomic characterization of an adenovirus from the subfamily Colobinae.