Project description:Osteosarcoma is the most common primary malignant tumour of bone occurring in children and young adolescents. Osteosarcoma is characterized by considerable phenotypic and genomic heterogeneity, and few recurrent targetable genetic changes have been reported. Osteosarcoma exhibits a complex karyotype with high genomic and chromosomal instability; and harbours multiple rearrangements across the genome, kataegis and chromothripsis as well as epigenetic changes. Here we have performed DNA methylation profiling on 10 osteosarcoma patient samples and four bones using the Infinium HumanMethylation450 BeadChip from Illumina, covering 485,000 CpG sites across the genome.
Project description:Osteosarcoma is the most common primary malignant bone tumor in children. Validated markers for disease prognosis available at diagnosis are lacking. No genome-wide DNA methylation studies linked to clinical outcomes have been reported in osteosarcoma. To address this, we tested the methylome at over 1.1 million loci in 15 osteosarcoma biopsy samples obtained prior to the initiation of therapy and correlated these molecular data with disease outcomes. At the tested loci, samples obtained from patients who experienced disease relapse were generally more methylated than those from patients who did not have recurrence. In samples from patients who went on to have recurrent disease, increased DNA methylation was found at gene bodies, intergenic regions and empirically-annotated candidate enhancers, whereas candidate gene promoters were unusual for a more balanced distribution of increased and decreased DNA methylation. A locus at the TLR4 gene demonstrates one of strongest associations between DNA methylation and five year event-free survival, with empirical annotation of this locus showing promoter characteristics. Our data indicate that DNA methylation information has potential to be predictive of outcome in pediatric osteosarcoma, and that both promoters and non-promoter loci are potentially informative in DNA methylation studies. 15 samples. HpaII libraries were compared to at least 3 MspI libraries from the same sample
Project description:Osteosarcoma is the most common primary malignant bone tumor in children. Validated markers for disease prognosis available at diagnosis are lacking. No genome-wide DNA methylation studies linked to clinical outcomes have been reported in osteosarcoma. To address this, we tested the methylome at over 1.1 million loci in 15 osteosarcoma biopsy samples obtained prior to the initiation of therapy and correlated these molecular data with disease outcomes. At the tested loci, samples obtained from patients who experienced disease relapse were generally more methylated than those from patients who did not have recurrence. In samples from patients who went on to have recurrent disease, increased DNA methylation was found at gene bodies, intergenic regions and empirically-annotated candidate enhancers, whereas candidate gene promoters were unusual for a more balanced distribution of increased and decreased DNA methylation. A locus at the TLR4 gene demonstrates one of strongest associations between DNA methylation and five year event-free survival, with empirical annotation of this locus showing promoter characteristics. Our data indicate that DNA methylation information has potential to be predictive of outcome in pediatric osteosarcoma, and that both promoters and non-promoter loci are potentially informative in DNA methylation studies.
Project description:Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor suppressor p53 TP53 is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples. Significance: This is the first large scale study of DNA methylation in osteosarcoma and lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of different genomic landscapes.
Project description:Osteosarcoma (OS) is a very aggressive bone tumor characterized by highly abnormal complex karyotypes.This a-CGH is a part of an expriment whose aim was to identify, genomic imbalance, DNA methylation and gene expression profiles in a panel osteosarcoma tumors. Keywords: comparative genomic hybridization
Project description:Gene expression profiles of cultured mesenchymal stromal cells obtained from osteosarcoma patients at diagnosis and healthy donors were compared.
Project description:Osteosarcomas are the most common primary malignant tumours of bone, and almost all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. The cell lines showed complex patterns of DNA copy number changes, where copy number gains were significantly associated with gene-rich regions of the genome and losses with gene-poor areas. Integration of the datasets showed that the mRNA levels were regulated by either alterations in DNA copy number or DNA methylation. Using a recurrence threshold of 6/19 (> 30 %) cell lines, 348 genes were identified as having alterations of two data types (gain or hypo-methylation/over-expression, loss or hyper-methylation/under-expression). These genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2M-bM-^@M-^Y-deoxycytidine treatment for all four genes tested. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for some genes. Integrative analysis of genome-wide genetic and epigenetic alterations identified mechanistic dependencies and relationships between DNA copy number and DNA methylation in terms of regulating mRNA expression levels in osteosarcomas, contributing to better understanding of osteosarcoma biology. Comparison of DNA methylation patterns in 19 osteosarcoma cell lines and 6 normal samples (osteoblasts and bones)
Project description:Despite the development of diagnostic and advanced treatment strategies, the prognosis of patients with osteosarcoma remains poor. A limited understanding of the pathogenesis of osteosarcomas has impeded any improvement in patient outcomes over the past 4 decades. It is thus urgent to identify novel effective targets and treatment regimens for osteosarcoma patients. In this study we delineated the super-enhancer landscape in osteosarcoma cells on the basis of H3K27ac signal intensity by ChIP-Seq and found that super-enhancer-associated genes contribute to the malignant potential of osteosarcoma. THZ2, a novel small molecular inhibitor, shows a powerful anti-osteosarcoma ability through suppress super-enhancer-associated genes selectively. Utilizing the characteristics of super-enhancers in cancer cells, we identified 5 critical super-enhancer-associated oncogenes. With the comparative and retrospective analysis in large numbers of human specimens from patients, these 5 oncogenes were observed closely related with patient prognosis. Our findings determined that targeting super-enhancer-associated oncogenes with transcriptional inhibitor, THZ2, was a promising therapeutic strategy in osteosarcoma, and provided novel candidate targets for patients with osteosarcoma.