Project description:We used an approach combining PacBio data and published Illumina reads to de novo assemble D. busckii contigs. We generated Hi-C data from D. busckii embryos to order these contigs into chromosome-length scaffolds. For D. virilis we generated Hi-C data to order and orient the published Dvir_caf1 scaffolds into chromosome-length assemblies. Furthermore, we compared Hi-C matrices from these two new assemblies with D. melanogaster with respect to synteny blocks and dosage compensation as a chromosome-wide gene-regulatory mechanism.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:We used an approach combining PacBio data and published Illumina reads to de novo assemble D. busckii contigs. We generated Hi-C data from D. busckii embryos to order these contigs into chromosome-length scaffolds. For D. virilis we generated Hi-C data to order and orient the published Dvir_caf1 scaffolds into chromosome-length assemblies. Furthermore, we compared Hi-C matrices from these two new assemblies with D. melanogaster with respect to synteny blocks and dosage compensation as a chromosome-wide gene-regulatory mechanism.
Project description:We employed next generation sequencing to examine whether knocking down the steroid receptor RNA activator (SRA) gene significantly affect the expression levels of certain genes in MCF-7 cells. MCF-7 cells were transfected with either a pool of four non-target control siRNAs or a pool of four SRA siRNAs for 32 hrs. 157 million reads were generated from triplicate samples of the control group; 151 million reads were generated from triplicate samples of the SRA knockdown group. Six genes were identified as significantly changed in the expression levels with the cutoff of q value ≤ 0.05, fold change ≤ 0.5 or ≥ 2, and reads per kilobase per million mapped reads (RPKM) ≥ 1. However, except for SRA itself, the other five genes were shown by real-time PCR to be only affected by one siRNA in the SRA siRNA pool. Further analysis of this dataset with different cuttoff setting may reveal true SRA-regulated genes in MCF-7.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:Chromatin immunoprecipitation analysis of CENH3 in the Arabidopsis thaliana accessions Col-0, Ler-0, Cvi-0 and Tanz-1 was performed in order to align reads to PacBio HiFi genome assemblies which contain complete centromere repeat arrays.
Project description:In this study, we analyzed the microbial communities from a methane-based bio-reactor with selenate as an electron accepter. Four biological replicates were analyzed by metagenomics, of which data can be found in the SRA database (Accession number: SRP136677, SRP136696, SRP136790 and SRP136859). Based on the metagenomic data, we detected the expressed proteins using metaproteomics. This data is also included in this submission.
Project description:Phosphorus (P) is an essential macronutrient for plant growth and development, and a plant must balance P uptake, mobilisation, and partitioning to various organs to modulate P homeostasis. The underlying molecular mechanisms of wheat under phosphate (Pi) starvation conditions remain elusive despite wheat is an important cultivated food crop worldwide. We generated transcriptome profiles of wheat variety Chinese Spring (CS) in response to Pi starvation (-P) for 10 days using RNA-Seq methods.We used 73.8 million high-quality reads obtained from libraries for de novo assembly. Overall, a set containing 29,617 non-redundant wheat transcripts was constructed with 15,047 assemblies and 14,570 non-redundant, full-length cDNAs in TriFLDB. Of the transcripts, 10,656 of the 15,047 assemblies were unaligned against barley full-length cDNAs, suggesting that many of them might be distinct of barley transcripts. The distribution of average expression levels for the assembly was lower than that for cDNAs, suggesting that the assemblies contained rare transcripts limited availability using full-length cDNA library construction methods. Within the transcript set, we identified 892-2,833 up- or downregulated transcripts in root and shoot, including 18.9-40.5% assemblies, uncovered by cDNAs in TriFLDB under -P in each condition. In the results, the expression level of wheat IPS1 (induced by phosphate starvation 1) homolog, TaIPS1, was 358.6-fold higher in the root and 12.6-fold higher in the shoot, which was confirmed by qRT-PCR analysis. Comparative analysis between wheat (a rice orthologue) and rice responsive transcripts under -P conditions showed that 39 (root) and 21 (shoot) responsive transcripts were commonly upregulated, and most of them seemed to be involved in a general response to -P; IPS1-mediated signal transduction and its downstream function such as Pi remobilization, Pi uptake and change metabolism.Our transcriptome profiling demonstrates the impact of -P in wheat. This study shows that enhancing the Pi-mediated signalling pathway through IPS1 is conserved as a potent adaptation to Pi starvation in both wheat and rice, and also that our constructed strategy using short read next generation sequencing (NGS) data was successful for the transcriptome analysis in wheat without reference genome. Note: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence “Source Name” was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:In order to elucidate the general rules for gene localization and regulation mediated by CpG islands, we reanalyzed published ChIP-seq data of CXXC domain, H3K9me3, KDM2A, SUV39H1, ATF4, MYBL1, MYOD1, SPI1, and CTCF. Raw data were downloaded from Sequence Read Archive (SRA) in National Center for Biotechnology Information (NCBI) database. FASTQ files were extracted with the SRA Toolkit version 2.5.5 and aligned using Bowtie 2.2.5 onto the mouse and human genome (mm9 and hg19, respectively). For the identification of factor binding sites, model-based analysis for ChIP-seq peak caller (MACS 1.4.2) was used with a p-value cutoff of 1e-5.