Project description:Idiopathic normal pressure hydrocephalus (iNPH) is a common, yet enigmatic form of dementia characterized by cerebral ventriculomegaly. In contrast to other types of hydrocephalus, iNPH exhibits normal or even reduced intracranial pressures and infrequent reductions in ventricular size after CSF shunting. Here, we generated the first single-cell RNA sequencing atlas of the peripheral blood and ventricular CSF in elderly iNPH patients totaling 140,207 transcriptomes. Integrated analyses identified a pro-inflammatory signature in peripheral blood and CSF monocytes that was significantly enriched in iNPH subgroups with lower cognitive function. We also identified novel CSF cell populations likely representing the periventricular sloughing of degenerating neuroglial cells. Our findings suggest that immune dysregulation detectable in peripheral blood monocytes contributes to CSF space inflammation, neurodegeneration, and associated cognitive deficits in iNPH. These data shift the paradigm of iNPH from a primary disorder of impaired “brain plumbing” and highlight the potential for non-invasive, immune-based diagnostic and treatment strategies.
Project description:Molecular biomarkers for neurodegenerative diseases are critical for advancing diagnosis and therapy. Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by progressive neurodegeneration, gait impairment, urinary incontinence and cognitive decline. In contrast to most other neurodegenerative disorders, NPH symptoms can be improved by the placement of a ventricular shunt that drains excess CSF. A major challenge in NPH management is the identification of patients who benefit from shunt surgery. Here, we perform genome-wide RNA sequencing of extracellular vesicles in CSF of 42 NPH patients, and we identify genes and pathways whose expression levels correlate with gait, urinary or cognitive symptom improvement after shunt surgery. We describe a machine learning algorithm trained on these gene expression profiles to predict shunt surgery response with high accuracy. The transcriptomic signatures we identified may have important implications for improving NPH diagnosis and treatment and for understanding disease aetiology.
Project description:Though congenital hydrocephalus is heritable, it has been linked only to eight genes, one of which is MPDZ. Humans and mice that carry a truncated version of MPDZ incur severe hydrocephalus resulting in acute morbidity and lethality. We show by magnetic resonance imaging that contrast-medium penetrates into the brain ventricles of mice carrying a Mpdz loss-of-function mutation, whereas none is detected in the ventricles of normal mice, implying that the permeability of the choroid plexus epithelial cell monolayer is abnormally high. Comparative proteomic analysis of the cerebrospinal fluid of normal and hydrocephalic mice revealed up to a 53-fold increase in protein concentration, suggesting that transcytosis through the choroid plexus epithelial cells of Mpdz KO mice is substantially higher than in normal mice. These conclusions are supported by ultrastructural evidence, and by immunohistochemistry and cytology data. Our results provide a straightforward and concise explanation for the pathophysiology of Mpdz-linked hydrocephalus.
Project description:Transcriptional profiling of the parietal cortex was performed in postnatal day 22 rats with obstructive hydrocephalus. An intracisternal injection of kaolin was done on postnatal day one, and severe hydrocephalus developed over 3 weeks. Hydrocephalic animals were compared to age-matched saline controls. The goal was to determine the effects of kaolin-induced neonatal hydrocephalus on gene expression. Two-condition experiment: kaolin-induced vs. saline-injected controls. Replicates: 5 treatment samples and 5 saline controls.
Project description:There are a total of 73 CSF proteomic data, including 37 samples from pre-operative iNPH, 16 samples from normal elderly controls, and 20 samples from inter-operative and post-operative iNPH. This study aims to identify biomarkers for shunt prognosis by CSF proteomic profiling.
Project description:Transcriptional profiling of the parietal cortex was performed in postnatal day 22 rats with obstructive hydrocephalus. An intracisternal injection of kaolin was done on postnatal day one, and severe hydrocephalus developed over 3 weeks. Hydrocephalic animals were compared to age-matched saline controls. The goal was to determine the effects of kaolin-induced neonatal hydrocephalus on gene expression.
Project description:Vestibular schwannoma is a common benign tumour that may cause local complications. However, vestibular schwannoma has a known association with communicating hydrocephalus presenting with symptoms of normal pressure hydrocephalus and requiring treatment by ventricular shunting or tumour resection. We report a 79-year-old woman who presented with subacute gait apraxia, cognitive impairment and urinary incontinence. CT and MR imaging identified a 20 mm vestibular schwannoma and communicating hydrocephalus; her cerebrospinal fluid (CSF) protein was elevated. Her symptoms improved following ventriculoperitoneal shunt insertion. The mechanism by which non-obstructing vestibular schwannoma causes hydrocephalus is unclear, but hyperproteinorrachia is probably important, likely by impeding CSF resorption.