Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome.
Project description:Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco- and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ~65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecular mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non-reactive (HkNR) pathologies, alongside healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated with cellular plasticity, such as partial EMT (p-EMT) phenotypes, and with immune response. Integrated analyses of the host transcriptome and microbiome further highlighted a significant association between differential microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome towards PML evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may help early diagnosis and disease interception at an early stage.
Project description:Pancreatic cancer is among the deadliest cancers that affects almost 54,000 patients in United States alone, with 90% of them succumbing to the disease. Lack of early detection is considered to be the foremost reason for such dismal survival rates. Our study shows that resident gut microbiota is altered at the early stages of tumorigenesis much before development of observable tumors in a spontaneous, genetically engineered mouse model for pancreatic cancer. In the current study, we analyzed the microbiome of in a genetic mouse model for PDAC (KRASG12DTP53R172HPdxCre or KPC) and age-matched controls using WGS at very early time points of tumorigenesis. During these time points, the KPC mice do not show any detectable tumors in their pancreas. Our results show that at these early time points, the histological changes in the pancreas correspond to a significant change in certain gut microbial population. Our predictive metabolomic analysis on the identified bacterial species reveal that the primary microbial metabolites involved in progression and development of PDAC tumors are involved in polyamine metabolism.