Project description:Purpose: In this work, we evaluated the role of two indicative species, Citrobacter werkmanii (CW) and Escherichia albertii (EA), in the virulence of two DEC pathotypes, Shiga toxin-producing (STEC) and enteroaggregative (EAEC) Escherichia coli. Methods: To determine the effect of supernatant obtained from CW and EA cultures in STEC strain 86-24 and EAEC strain 042 gene expression, a RNA-seq analysis was performed. T84 cells were infected with DEC strains in the presence or absence of supernatant from EA and IL-8 secretion was evaluated. The effect of supernatant from EA on the growth and adherence of STEC and EAEC to T84 cells was also evaluated. Finally, we studied the participation of long polar fimbriae (Lpf) in STEC and plasmid-encoded toxin (Pet) in EAEC during DEC infection in the presence of supernatant from EA. Results: RNA-seq analysis revealed that several virulence factors in STEC and EAEC were up-regulated in the presence of supernatants from CW and EA. Interestingly, an increase in the secretion of IL-8 was observed in T84 cells infected with STEC or EAEC in the presence of a supernatant from EA. Similar results were observed with the supernatants obtained from clinical strains of E. albertii. Supernatant from EA had no effect on the growth of STEC and EAEC, or on the ability of these DEC strains to adhere to intestinal epithelial cells. Finally, we found that Pet toxin in EAEC was up-regulated in the presence of a supernatant from EA. In STEC, using mutant strains for Lpf fimbriae, our data suggested that these fimbriae might be participating in the increase of IL-8 induced by STEC on intestinal epithelial cells in the presence of a supernatant from EA. Conclusion:Supernatant obtained from an indicative species of DEC-positive diarrhea could modulate gene expression in STEC and EAEC, and IL-8 secretion induced by these bacteria. These data provide new insights into the effect of gut microbiota species in the pathogenicity of STEC and EAEC.
Project description:Shiga toxin-producing Escherichia coli (STEC) are food-borne pathogens that can cause severe symptoms in humans. Raw milk products are often incriminated as vectors for human STEC infection. However, raw milk naturally contains molecules, such as the milk fat globule membrane and associated proteins, that could inhibit pathogen adhesion by acting as mimetic ligands. This study aimed to: evaluate the capability of STEC cells to adhere to bovine milk fat globule membrane proteins (MFGMPs); highlight STEC surface proteins associated with adhesion; and evaluate the variation between different STEC serotypes. We evaluated the physicochemical interactions between STEC and milk fat globules (MFGs) by analyzing hydrophobic properties and measuring the z-potential. We used a plate adhesion assay to assess adhesion between MFGMPs and 15 Escherichia coli strains belonging to three key serotypes (O157:H7, O26:H11, and O103:H2). A relative quantitative proteomic approach was conducted by mass spectrometry to identify STEC surface proteins that may be involved in STEC-MFG adhesion. The majority of E. coli strains showed a hydrophilic profile. The z-potential values of the strains and MFGs were between -3.7 and -2.9 mV and between -12.2 more or less 0.14 mV, respectively. Our results suggest that non-specific interactions are not strongly involved in STEC-MFG association and that molecular bonds could form between STEC and MFGs. Plate adhesion assays showed a weak adhesion of O157:H7 E. coli strains to MFGMPs. In contrast, O26:H11 and O103:H2 serotypes attached more to MFGMPs. Relative quantitative proteomic analysis showed that the O26:H11 str. 21765 differentially expressed five outer membrane-associated proteins or lipoproteins compared with the O157:H7 str. EDL933. This analysis also found strain-specific differentially expressed proteins, including four O26:H11 str. 21765-specific proteins/lipoproteins and eight O103:H2 str. PMK5-specific proteins. For the first time, we demonstrated STEC adhesion to MFGMPs and discovered a serotype effect. Several outer membrane proteins-OmpC and homologous proteins, intimin, Type 1 Fimbriae, and AIDA-I-that may be involved in STEC-MFG adhesion were highlighted. More research on STEC's ability to adhere to MFGMs in diverse biological environments, such as raw milk cheeses and the human GI tract, is needed to confirm the anti-adhesion properties of the STEC-MFG complex.
Project description:Background Compelling evidence indicates that Shigella species, the etiologic agents of bacillary dysentery, as well as enteroinvasive Escherichia coli, are derived from multiple origins of Escherichia coli and form a single pathovar. To further understand the genome diversity and virulence evolution of Shigella, comparative genomic hybridization microarray analysis was employed to compare the gene content of E. coli K-12 with those of 43 Shigella strains from all serotypes. Results For the 43 strains subjected to CGH microarray analyses, the common backbone of the Shigella genome was estimated to contain more than 1,900 open reading frames, with a mean number of 729 undetectable ORFs. The mosaic distribution of absent regions indicated that insertions and/or deletions have led to the highly diversified genomes of pathogenic strains. Conclusion These results support the hypothesis that by gain and loss of functions, Shigella species became successful human pathogens through convergent evolution from diverse genomic backgrounds. Moreover, we also found many specific differences between different lineages, providing a window into understanding bacterial speciation and taxonomic relationships. Keywords: comparative genomic hybridization
Project description:Background: Based on 32 Escherichia coli and Shigella genome sequences, we have developed an E. coli pan-genome microarray. Publicly available genomes were annotated in a consistent manor to define all currently known genes potentially present in the species. The chip design was evaluated by hybridization of DNA from two sequenced E. coli strains, K-12 MG1655 (a commensal) and O157:H7 EDL933 (an enterotoxigenic E. coli). A dual channel and single channel analysis approach was compared for the comparative genomic hybridization experiments. Moreover, the microarray was used to characterize four unsequenced probiotic E. coli strains, currently marketed for beneficial effects on the human gut flora. Results: Based on the genomes included in this study, we were able to group together 2,041 genes that were present in all 32 genomes. Furthermore, we predict that the size of the E. coli core genome will approach ~1,560 essential genes, considerably less than previous estimates. Although any individual E. coli genome contains between 4,000 and 5,000 genes, we identified more than twice as many (11,872) distinct gene groups in the total gene pool (“pan-genome”) examined for microarray design. Benchmarking of the design based on sequenced control strain samples demonstrated a high sensitivity and relatively low false positive rate. Moreover, the array was highly sufficient to investigate the gene content of apathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been sequenced so far. Our analysis of four probiotic E. coli strains demonstrate that they share a gene pool very similar to the E. coli K-12 strains but also show significant similarity with enteropathogenic strains. Nonetheless, virulence genes were largely absent. Strain-specific genes found in probiotic E. coli but absent in E. coli K12 were most frequently phage-related genes, transposases and other genes related to mobile DNA, and metabolic enzymes or factors that may offer colonization fitness, which together with their asymptomatic nature may explain their nature. Conclusion: This high-density microarray provides an excellent tool for characterizing either DNA content or gene expression from unknown E. coli strains. Keywords: Comparative genomic hybridizations
Project description:<p>Traveler's diarrhea (TD) is caused by enterotoxigenic Escherichia coli (ETEC), other pathogenic gram-negative pathogens, norovirus and some parasites. Nevertheless, standard diagnostic methods fail to identify pathogens in more than 30% of TD patients, so it is predicted that new pathogens or groups of pathogens may be causative agents of disease. A comprehensive metagenomic study of the fecal microbiomes from 23 TD patients and seven healthy travelers was performed, all of which tested negative for the known etiologic agents of TD in standard tests. Metagenomic reads were assembled and the resulting contigs were subjected to semi-manual binning to assemble independent genomes from metagenomic pools. Taxonomic and functional annotations were conducted to assist identification of putative pathogens. We extracted 560 draft genomes, 320 of which were complete enough to be enough characterized as cellular genomes and 160 of which were bacteriophage genomes. We made predictions of the etiology of disease in individual subjects based on the properties and features of the recovered cellular genomes. Three subtypes of samples were observed. First were four patients with low diversity metagenomes that were predominated by one or more pathogenic E. coli strains. Annotation allowed prediction of pathogenic type in most cases. Second, five patients were co-infected with E. coli and other members of the Enterobacteriaceae, including antibiotic resistant Enterobacter, Klebsiella, and Citrobacter. Finally, several samples contained genomes that represented dark matter. In one of these samples we identified a TM7 genome that phylogenetically clustered with a strain isolated from wastewater and carries genes encoding potential virulence factors. We also observed a very high proportion of bacteriophage reads in some samples. The relative abundance of phage was significantly higher in healthy travelers when compared to TD patients. Our results highlight that assembly-based analysis revealed that diarrhea is often polymicrobial and includes members of the Enterobacteriaceae not normally associated with TD and have implicated a new member of the TM7 phylum as a potential player in diarrheal disease. </p>
Project description:Comparative genomic hybridization between Escherichia coli strains to determine core and pan genome content of clinical and environmental isolates
Project description:Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a notorious foodborne pathogen capable of causing severe gastrointestinal infections in humans. The bovine rectoanal junction (RAJ) has been identified as a primary reservoir of STEC O157:H7, playing a critical role in its transmission to humans through contaminated food sources. Despite the relevance of this host-pathogen interaction, the molecular mechanisms behind the adaptation of STEC O157:H7 in the bovine RAJ and its subsequent infection of human colonic epithelial cells remain largely unexplored. This study aimed to unravel the intricate dynamics of STEC O157:H7 in two distinct host environments: bovine RAJ squamous epithelial (RSE) cells and human colonic epithelial cells. Comparative transcriptomics analysis was employed to investigate the differential gene expression profiles of STEC O157:H7 during its interaction with these cell types. The bacterial cells were cultured under controlled conditions to simulate the microenvironments of both bovine RAJ and human colonic epithelial cells. Using high-throughput RNA sequencing, we identified key bacterial genes and regulatory pathways that are significantly modulated in response to each specific host environment. Our findings reveal distinct expression patterns of virulence factors, adhesion proteins, and stress response genes in STEC O157:H7 grown in bovine RAJ cells as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlights the potential role of certain genes in host adaptation and tissue-specific pathogenicity. Furthermore, this study sheds light on the potential factors contributing to the survival and persistence of STEC O157:H7 in the bovine reservoir and its ability to colonize and cause disease in humans.