Project description:Florida’s coral reefs are currently experiencing a multi-year disease-related mortality event, that has resulted in massive die-offs in multiple coral species. Coral monitoring data and disease prevention/treatment efforts from recent years have identified individual Orbicella faveolata that possess high, moderate, or low resistance to stony coral tissue loss disease (SCTLD). Ninety samples of high, moderate, or low SCTLD resistance were collected from 3 reefs for bottom-up LC-MS/MS analysis (n=30 for each resistance category).
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching 5 control and 5 heat-stressed RNA samples were hybridized in a 5-replicate dye-swap design (10 total hyb's).
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching Time course with 4 time points and 4 biological replicates per time point. Each biological replicate at each time point was hybridized to a pooled reference control sample containing RNA from all control non-heat-stressed coral fragments.
Project description:Mesophotic coral reefs have been proposed as refugia for corals, providing shelter and larval propagules for shallow-water reefs that are disproportionately challenged by global climate change and local anthropogenic stressors. Yet, knowledge of the capacity of coral larvae to adjust to different depth environments is still limited. In this study, planulae of the reef-building coral Stylophora pistillata from 5-8 and 40-44 m depth in the Gulf of Aqaba were tested in a long-term in situ translocation experiment for their ability to settle and acclimate to reciprocal depth conditions. We assessed survival rates, photochemical, physiological and morphological characteristics, as well as gene expression variations in juveniles grown at different depths, comparing them to non-translocated adults, juveniles and planulae. We found high mortality rates among mesophotic-origin planulae, irrespective of translocation depth. Gene expression patterns suggested that deep planulae lacked settlement competency and experienced increased developmental stress upon release. Symbiont photochemical acclimation to depth occurred rapidly within 8 days, with symbiont populations showing changes in photochemical traits but no symbiont species shuffling between deep and shallow juveniles. In contrast, coral host physiological and morphological acclimation were less evident. We observed minimal overlap in gene expression patterns between different life stages and depths, indicating that gene expression significantly depends on life stage. The study also identified a set of DEGs associated with initial stress responses following translocation, lingering stress response, and environmental effects of depth. In conclusion, though our data reveal rapid symbiont acclimation, host acclimation to match deep coral phenotypes was incomplete within 60 days for planulae translocated to different depths. These results have implications for understanding the ecological significance of mesophotic reefs as potential larval sources in the face of environmental stressors.
Project description:A mutualistic relationship between reef-building corals and endosymbiotic algae (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. If, and to what extent, differences in algal symbiont clade contents can exert effects on the coral host transcriptome is currently unknown. In this study, we monitored algal physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered coral fragments using a custom cDNA gene expression microarray. Combining these analyses with results from algal and host genotyping revealed a striking symbiont effect on both the acclimated coral host transcriptome and the magnitude of the thermal stress response. This is the first study that links coral host transcriptomic patterns to the clade content of their algal symbiont community. Our data provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-algal partnerships.
Project description:Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this needs to be taken into account when using mitochondrial markers for scleractinian phylogenies.