Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 M-NM-<m). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the raw wastewater, effluents from three types of membrane bioreactors (MBRs), and the activated sludge process. Wastewater DNA microarray with 8795 human genes. MQ water was used as control. For duplicate, two dishes were prepared for each sample and individually treated in parallel.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 μm). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents.
Project description:The increase in human population and urbanization are resulting in an increase in the volume of wastewater and urban runoff effluents entering natural ecosystems. These effluents may contain multiple pollutants to which the biological response of aquatic organisms is still poorly understood mainly due to mixture toxicity and interactions with other environmental factors. In this context, RNA sequencing was used to assess the impact of a chronic exposure to wastewater treatment plant and stormwater effluents at the whole-transcriptome level and evaluate the potential physiological outcomes in the Asian clam Corbicula fluminea. We de-novo assembled a transcriptome from C. fluminea digestive gland and identified a set of 3,181 transcripts with altered abundance in response to water quality. The largest differences in transcriptomic profiles were observed between C. fluminea from the reference site and those exposed to wastewater treatment plant effluents. On both anthropogenically impacted sites, most differentially expressed transcripts were involved in signaling pathways in relation to energy metabolism such as mTOR and FoxO, suggesting an energy/nutrient deficit and hypoxic conditions. These conditions were likely responsible for damages to proteins and transcripts in response to wastewater treatment effluents whereas exposure to urban runoff might result in immune and endocrine disruptions. In absence of comprehensive chemical characterization, the RNAseq approach could provide information regarding the mode of action of pollutants and then be useful for the identification of which parameters must be studied at higher integration level in order to diagnose sites where the presence of complex and variable mixtures of chemicals is suspected.
Project description:Many biomonitoring tools/approaches have been proposed to assess presence of endocrine active chemicals (EACs) and their biological effects in the field. Although these tools have provided valuable information, they are often limited by their specificity for certain groups of EACs and they may not account for interactions between EACs. This study aims to evaluate utility of transcriptomic and metabolomic technologies for effects monitoring in the field, and to advance integration of omic and environmental chemistry data sets. The objective was to utilize transcriptomic biomonitoring to determine the relative contribution of wastewater treatment plant effluents to biological effects observed in fish exposed to ambient waters receiving the effluents. Adult male fathead minnow were exposed to treated wastewater effluent or stream water up or downstream the plant in three different watersheds for 4 days. After exposure, the liver of 5-7 fish per treatment per site (i.e 19-21 fish from each watershed) were analyzed by microarrays. The transcriptomic profiles were compared to control fish exposed to Lake Superior filtered water.
Project description:Laboratory tests with marine flatfish were conducted to investigate associations among gene expression, higher biological responses and wastewater effluent exposure. Previous studies showed molecular responses such as elevated concentrations of plasma estradiol and vitellogenin in wild male hornyhead turbot (Pleuronichthys verticalis). In the present study, male hornyhead turbot were exposed to environmentally realistic (0.5%) and higher (5%) concentrations of chemically enhanced advanced-primary (PL) and full-secondary treated (HTP) effluents from two southern California wastewater treatment plants (WWTP). Hepatic gene expression was examined using a custom low-density microarray. <br><br>
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
2020-07-01 | GSE153553 | GEO
Project description:Complete genome of carbapenem-resistant K. pneumoniae isolated in Chile