Project description:BackgroundSpirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.MethodsSpirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.ConclusionsThis is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.
Project description:5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here, we report that a monocot plant, Spirodela polyrhiza, has lost CG gene body methylation, genome-wide CHH methylation, and the presence or expression of several genes in the highly conserved RNA-directed DNA methylation (RdDM) pathway. It has also lost the CHH methyltransferase CHROMOMETHYLASE 2. Consequently, the transcriptome is depleted of 24-nucleotide, heterochromatic, small interfering RNAs that act as guides for the deposition of 5mC to RdDM-targeted loci in all other currently sampled angiosperm genomes. Although the genome displays low levels of genome-wide 5mC primarily at LTR retrotransposons, CG maintenance methylation is still functional. In contrast, CHG methylation is weakly maintained even though H3K9me2 is present at loci dispersed throughout the euchromatin and highly enriched at regions likely demarcating pericentromeric regions. Collectively, these results illustrate that S. polyrhiza is maintaining CG and CHG methylation mostly at repeats. S. polyrhiza reproduces rapidly through clonal propagation in aquatic environments, which we hypothesize may enable low levels of maintenance methylation to persist in large populations.
Project description:Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.