Project description:Ewing sarcoma is a bone malignancy of children and young adults, frequently harboring the EWS/FLI t(11;22)(q24;q12) chromosomal translocation. The resulting fusion protein is an aberrant transcription factor that uses highly repetitive GGAA-containing elements (microsatellites) to activate and repress thousands of target genes mediating oncogenesis. However, the mechanisms of EWS/FLI interaction with microsatellites and regulation of target genes expression is not clearly understood. Here, we profile genome-wide protein binding and gene expression. Using a combination of unbiased genome-wide computational and experimental analysis, we define GGAA-microsatellites in a Ewing sarcoma context. Our study identifies two distinct classes of GGAA-microsatellites and demonstrates that EWS/FLI responsiveness is dependent on microsatellite length. At close range (within 5 kb) “promoter-like” microsatellites, EWS/FLI binding and subsequent target genes activation is highly dependent on the number of GGAA-motifs. “Enhancer-like” microsatellites demonstrate a positive correlation with length-dependent EWS/FLI binding, but minimal correlation for activated and none for repressed target genes. Our data suggest that EWS/FLI binds to “promoter-like” and “enhancer-like” microsatellites to mediate activation and repression of target genes through different regulatory mechanisms. Such characterization contributes valuable insight to EWS/FLI transcription factor biology and clarifies the role of GGAA-microsatellites on a global genomic scale. This may provide a unique perspective on the role of non-coding DNA in cancer susceptibility and therapeutic development.
Project description:Background: Next-generation sequencing (NGS) is fundamental to the current biological and biomedical research. Construction of sequencing library is a key step of NGS. Therefore, various library construction methods have been explored. However, the current methods are still limited by some shortcomings. Results: This study developed a new NGS library construction method, Single strand Adaptor Library Preparation (SALP), by using a novel single strand adaptor (SSA). SSA is a double-stranded oligonucleotide with a 3ʹ overhang of 3 random nucleotides, which can be efficiently ligated to the 3′ end of single strand DNA by T4 DNA ligase. SALP can be started with any denatured DNA fragments such as those sheared by Tn5 tagmentation, enzyme digestion and sonication. When started with Tn5-tagmented chromatin, SALP can overcome a key limitation of ATAC-seq and become a high-throughput NGS library construction method, SALP-seq, which can be used to comparatively characterize the chromatin openness state of multiple cells unbiasly. In this way, this study successfully characterized the comparative chromatin openness states of four different cell lines, including GM12878, HepG2, HeLa and 293T, with SALP-seq. Similarly, this study also successfully characterized the chromatin openness states of HepG2 cells with SALP-seq by using 105 to 500 cells. Conclusions: This study developed a new NGS library construction method, SALP, by using a novel kind of single strand adaptor (SSA), which should has wide applications in the future due to its unique performance.
Project description:Advances in Next Generation Sequencing (NGS) have made available a wealth of information that had previously been inaccessible to researchers and clinicians. NGS has been applied to understand genomic, transcriptomic, and epigenomic changes and gained traction as a significant tool capable of accelerating diagnosis, prognosis, and biomarker discovery. However, these NGS assays have yet to be practical methods for patient stratification or diagnosis because of the gap between the tiny quantities of biomaterials provided by a clinical sample and the large DNA input required by most of these assays. Current library preparation methodologies typically require large input amounts of DNA and a long and complicated manual process. Here we present a microfluidic reactor system for NGS library preparation, capable of reducing the number of pipetting steps significantly, automating much of the process, while supporting extremely low DNA input requirement (10 pg per library). This largely automated technology will allow for low-input preparations of 8 libraries simultaneously while reducing batch to batch variation and operator hands-on time.