Project description:In the article "Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers" by Bejjani et al., we mapped p300/CBP binding sites in MDA-MB-231 cells transfected with a control siRNA or a siRNA directed against Fra-1(FOSL1) to study whether Fra-1 can modulate p300/CBP recruitment on MDA-MB-231 genome
Project description:In the article "Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers" by Bejjani et al., we mapped epigenetic marks (H3K4me1, H3K4me3, H3K27ac), p300/CBP, PolII and CTCF to characterize the binding sites of Fra-1 and Fra-2 on MDA-MB-231 genome. Data for Fra-1 and Fra-2 ChIP-seq are available on GEO database, accession number GSE132098 (Tolza et al., 2019, MCR 17, 1999-2014)
Project description:Histone acetylation is important for the activation of gene transcription but little is known about its direct ‘read/write’ mechanisms. Here, we report cryo-electron microscopy structures in which a p300/CBP multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for ‘reading’, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 ‘writes’ by ‘reading’ H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP ‘replicates’ histone NT acetylation within the H3-H4 tetramer to inherit epigenetic storage, and ‘transcribes’ it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Project description:The acetyltransferases CBP and p300 are multifunctional transcriptional co-activators; however, their acetylation targets, site-specific acetylation kinetics, and function in proteome regulation are incompletely understood. We combined quantitative proteomics with novel CBP/p300-specific catalytic inhibitors, bromodomain inhibitor, and gene knockout to show that CBP/p300 acetylates thousands of sites, including signature histone sites, as well as a multitude of sites on signaling effectors and enhancer-associated transcriptional regulators. Kinetic analysis identified a subset of CBP/p300-regulated sites with very rapid (<30min) acetylation turnover, revealing a dynamic balance between acetylation and deacetylation. Quantification of acetylation, mRNA, and protein abundance after CBP/p300 inhibition reveals a kinetically competent network of gene expression that strictly depends on CBP/p300-catalyzed rapid acetylation. Collectively, our in-depth acetylome analyses reveal systems attributes of CBP/p300 targets, and the resource dataset provides a framework for investigating CBP/p300 functions, as well as for understanding the impact of small molecule inhibitors targeting its catalytic and bromodomain activities.
Project description:Dysregulated gene expression is one of the most prevalent features in human cancers. Here, we show that most subtypes of acute myeloid leukemia (AML) depend on the aberrant assembly of the MYB transcriptional co-activator complex. By rapid and selective peptidomimetic interference with the binding of CBP/P300 to MYB, but not CREB or MLL1, we find that the leukemic functions of MYB are mediated by CBP/P300-mediated co-activation of a distinct set of transcriptional factor complexes that are aberrantly assembled with MYB in AML cells. This therapeutic remodeling is accompanied by dynamic redistribution of CBP/P300 complexes to genes that control cellular differentiation and growth. Thus, aberrantly organized transcription factor complexes control convergent gene expression programs in AML cells. These findings establish a compelling strategy for pharmacologic reprogramming of oncogenic gene expression that supports its targeting for leukemias and other human cancers caused by dysregulated gene control.
Project description:C4-2B prostate cancer cells were transfected with siRNA against a non-specific (NS) sequence, siRNA specifically targeting EP300, or siRNA specifically targeting CREBBP. We tested the hypothesis that their exists different subgroups of genes that are preferentially affected by p300 or CBP depletion.
Project description:Reversible epsilon-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function remain enigmatic. In this study, we investigated the role of the homologous acetyltransferases p300 and CBP in skeletal muscle transcriptional homeostasis and physiology in adult mice. Mice with skeletal muscle-specific and inducible knockout of p300 and/or CBP were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human alpha-skeletal actin (HSA) promoter with mice harboring LoxP sites flanking exon 9 of both the Ep300 and Crebbp genes. Knockout was induced at 13-15 weeks of age via oral gavage of tamoxifen. We demonstrate that loss of both p300 and CBP in adult mouse skeletal muscle severely impairs contractile function and results in lethality within one week – a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The loss of muscle function in p300/CBP double knockout mice is paralleled by substantial transcriptional alterations in gene networks central to skeletal muscle contraction and structural integrity. Changes in protein expression patterns, determined by 10-plex TMT labeling, were linked to impaired muscle function also manifest within days (WT mice were compared to day 3 and day 5 knock out mice). Together, these data reveal the requirement of p300 and CBP for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle, and ultimately, organism survival. By extension, modulating p300/CBP function holds promise for the treatment of disorders characterized by impaired contractile function in humans.