Project description:We performed RNA-seq analysis of the root transcriptional response to Fusarium oxysporum f.sp. vasinfectum (FOV) race 4 (FOV4) infection in Gossypium barbadense, also known as Pima cotton. Susceptible Gossypium barbadense inbred lines Pima S-7 (PI 560140) and Pima 3-79 susceptible to Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV)] race 4 (FOV4), and Pima S-6 (PI 608346) which is resistant to FOV4 infection, were used for the preparation of cDNA libraries and further RNA-seq analyses. An isolate of FOV4 (FOV CA-14) from a naturally infested field in Fresno County in the San Joaquin Valley, California was used in this study.
Project description:Melon RNA-Seq analysis was used to identify candidate resistance genes and to understand the early molecular processes deployed during melon versus Fusarium oxysporum f.sp. melonis Snyd. & Hans race 1.2 (FOM1.2) interaction in the resistant doubled haploid line NAD as opposed to the susceptible genotype Charentais-T at 24 and 48 hours post inoculation (hpi).
Project description:Watermelon (Citrullus lanatus) is one of the most important vegetable crops in the world and accounts for 20% of the world’s total area devoted to vegetable production. Fusarium wilt of watermelon is one of the most destructive diseases in watermelon worldwide. Transcriptome profiling of watermelon during its incompatible interactions with Fusarium oxysporum f.sp. niveum (FON) was generated using an Agilent custom microarray which contains 15,000 probes representing approximately 8,200 watermelon genes. A total of 24, 275, 596, 598, and 592 genes that are differentially expressed genes between FON- and mock-inoculated watermelon roots at 0.5, 1, 3, 5 and 8 days post inoculation (dpi), respectively, were identified. Bioinformatics analysis of these differentially expressed genes revealed that during the incompatible interaction between watermelon and FON, the expression of a number of pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, and cell wall modification genes, was significantly induced. A number of genes for transporter proteins such as aquaporins were down-regulated, indicating that transporter proteins might contribute to the development of wilt symptoms after FON infection. In the incompatible interaction, most genes involved in biosynthesis of jasmonic acid (JA) showed expressed stronger and more sustained than those in compatible interaction in FON-infected tissues. Similarly, genes associated with shikimate-phenylpropanoid-lignin biosynthesis were also induced in incompatible interaction, but expression of these genes were not changed or repressed in the compatible interaction. Fusarium oxysporum f.sp. niveum induced gene expression in watermelon root was measured at 0.5,1d, 3d, 5d and 8d after inoculation. Sample inoculated with water were used as the mock controls. Three independent experiments were performed.
Project description:Xylem sap proteome studies on susceptible or resistant tomato (Solanum lycopersicum) inoculated with endophytic and/or pathogenic strains of Fusarium oxysporum f.sp. lycopersici were conducted to get insights into the molecular differences between endophyte- and R-gene-mediated resistance (EMR and RMR). The EMR and RMR proteomes were compared to each other and to the mock control. Interestingly, specific PR-5 isoforms were found to exclusively accumulate during endophyte or genetic resistance, providing excellent markers to distinguish both resistance types at the molecular level.