Project description:The debilitating disease kala-azar or visceral leishmaniasis (VL) is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sandfly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. The infected female sandfly transmits the parasite when it takes a blood meal. Understanding the molecular interaction of the sand fly-Leishmania during the development of parasite within the gut of the sandfly is crucial to understanding parasite life cycle. The complete genome sequences of sandfly vectors (Phlebotomus and Lutzomyia) are currently not available and sequencing efforts are underway. Non-availability of genome sequence can hamper identification of proteins in the sandfly vector. In the present study we have carried out proteogenomic analysis of unsequenced sandfly vector P. paptasi cell line using high-resolution mass spectrometry and comparative homology-based searches using related dipteran protein data (mosquitoes and fruit fly). This study resulted in identification of 1,312 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms.
Project description:RNA-seq of Phlebotomus papatasi after feeding with blood, and blood containing Leishmania major, Leishmania donovani and Herpetomonas muscarum.
Project description:As important vectors of human disease, phlebotomine sand flies are of global significance to human health, transmitting several emerging and re-emerging infectious diseases. The most devastating of the sand fly transmitted infections are the leishmaniases, causing significant mortality and morbidity in both the Old and New World. Here we present the first global transcriptome analysis of the Old World vector of cutaneous leishmaniasis, Phlebotomus papatasi (Scopoli) and compare this transcriptome to that of the New World vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed using pooled mRNA from Phlebotomus papatasi larvae, pupae, adult males and females fed sugar, blood, or blood infected with Leishmania major. A total of 47 615 generated sequences was cleaned and assembled into 17 120 unique transcripts. Of the assembled sequences, 50% (8837 sequences) were classified using Gene Ontology (GO) terms. This collection of transcripts is comprehensive, as demonstrated by the high number of different GO categories. An in-depth analysis revealed 245 sequences with putative homology to proteins involved in blood and sugar digestion, immune response and peritrophic matrix formation. Twelve of the novel genes, including one trypsin, two peptidoglycan recognition proteins (PGRP) and nine chymotrypsins, have a higher expression level during larval stages. Two novel chymotrypsins and one novel PGRP are abundantly expressed upon blood feeding. This study will greatly improve the available genomic resources for P.?papatasi and will provide essential information for annotation of the full genome.
Project description:BackgroundMicrobes particularly bacteria presenting in the gut of haematophagous insects may have an important role in the epidemiology of human infectious disease.MethodsThe microbial flora of gut and surrounding environmental of a laboratory strain of Phlebotomus papatasi, the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in the old world, was investigated. Biochemical reactions and 16s rDNA sequencing of the isolated bacteria against 24 sugars and amino acids were used for bacteria species identification. Common mycological media used for fungi identification as well.ResultsMost isolates belonged to the Enterobacteriaceae, a large, heterogeneous group of gram-negative rods whose natural habitat is the intestinal tract of humans and animals. Enterobacteriaceae groups included Edwardsiella, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leminorella, Pantoea, Proteus, Providencia, Rahnella, Serratia, Shigella, Tatumella, and Yersinia and non Enterobacteriaceae groups included Bacillus, Staphylococcus and Pseudomonas. The most prevalent isolates were Proteus mirabilis and P. vulgaris. These saprophytic and swarming motile bacteria were isolated from all immature, pupae, and mature fed or unfed male or female sand flies as well as from larval and adult food sources. Five fungi species were also isolated from sand flies, their food sources and colonization materials where Candida sp. was common in all mentioned sources.ConclusionMidgut microbiota are increasingly seen as an important factor for modulating vector competence in insect vectors so their possible effects of the mirobiota on the biology of P. papatasi and their roles in the sandfly-Leishmania interaction are discussed.
Project description:Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.
Project description:Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains.A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species.Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.