Project description:The ‘Genetic Epidemiology of Asthma in Costa Rica’ is a family-based cross-sectional cohort ascertained between February 2001 and August 2008 on a Hispanic population isolate from the Central Valley of Costa Rica. The study recruited children between 6 to 14 years of age with moderate persistent asthma.
Project description:Data from multiple high throughput technologies such as RNA sequencing (RNA-Seq) and protein mass spectrometry (MS/MS) are often used to assist in predicting eukaryote genome features such as genes, splice variants, and single nucleotide variants (SNVs). The genomes of parasitic nematodes causing neglected tropical diseases are often poorly annotated. Angiostrongylus costaricensis, a nematode that causes an intestinal inflammatory disease known as abdominal angiostrongyliasis (AA), is one example. Currently, no drugs or treatments are available for AA, a public health problem in Latin America, especially in Costa Rica and Brazil. The available genome of A. costaricensis, specific to the Costa Rica strain, is a draft version not supported by transcript- or protein-level evidence. This study used RNA-Seq and MS/MS data to perform an in-depth annotation of the A. costaricensis genome. Our prediction supplemented the reference annotation with a) novel coding and non-coding genes; b) pieces of evidence of alternative splicing generating new proteoforms; c) a list of SNVs specific to the Brazilian strain (Crissiumal). To the best of our knowledge, this is the first time that a multi-omics approach has been used to improve the genome annotation of a parasitic nematode. We hope this supplemented genome annotation can assist the future development of drugs to treat AA caused by either Brazil strain (Crissiumal) or Costa Rica strain.
Project description:Upon exposure to unfavorable environmental conditions, plants need to respond quickly to maintain their homeostasis. For instance, physiological, biochemical and transcriptional changes occur during plant-pathogen interaction. In the case of Vanilla planifolia Jacks., a worldwide economically important crop, it is susceptible to Fusarium oxysporum f. sp. vanillae. This pathogen causes root and stem rot in vanilla plants that lead to plant death. To investigate how vanilla plants, respond at the transcriptional level upon infection with F. oxysporum f. sp. vanillae, here we employed the RNA-Seq approach to analyze the dynamics of whole-transcriptome changes during two-time frames of the infection. Analysis of global gene expression profiles indicated that the major transcriptional change occurred at 2 dpi, in comparison to 10 dpi. Whereas 3420 genes were found with a differential expression at 2 dpi, only 839 were identified at 10 dpi. The analysis of the transcriptional profile at 2 dpi suggests that, among other responses, vanilla plants prepare to counter the infection by gathering a pool of translational regulation-related transcripts. The screening of transcriptional changes of V. planifolia Jacks upon infection by F. oxysporum f. sp. vanillae provides insights into the plant molecular response, particularly the upregulation of ribosomal proteins at early stages. Thus, we propose that the plant-pathogen interaction between V. planifolia Jacks and F. oxysporum f. sp. vanillae causes a transcriptional reprogramming coupled with a translational regulation. Altogether, this study provides the identification of molecular players that could help to fight the most damaging disease of vanilla.
Project description:The basidiomycete Moniliophthora roreri causes frosty pod rot of cacao (Theobroma cacao) in the Western hemisphere. M. roreri is considered asexual and haploid throughout its hemibiotrophic lifecycle. To understand the processes driving genome modification, using long-read sequencing technology we sequenced and assembled five high quality M. roreri genomes out of a collection of ninety-nine isolates collected throughout the pathogen's range. We obtained chromosome-scale assemblies composed of eleven scaffolds. We used short-read technology to sequence the genomes of twenty-two similarly chosen isolates. Alignments among the five reference assemblies revealed inversions and segmental translocations and duplications between and within scaffolds. Isolates at the front of the pathogens’ expanding range tend to share lineage-specific structural variants, as confirmed by short-read sequencing. We identified, for the first time, three new mating type A locus alleles (five in total) and one new potential mating type B locus allele (three in total). Currently only two mating type combinations, A1B1 and A2B2, are known to exist outside of Colombia. A systematic survey of the M. roreri transcriptome across twenty-two isolates identified an expanded candidate effector pool and provided evidence that effector candidate genes unique to the Moniliophthoras have been selected for preferential expression during the biotrophic phase of disease. Notably, M. roreri isolates in Costa Rica carry a chromosome segment duplication that has doubled the associated gene complement and includes secreted proteins and candidate effectors. Clonal propagation of the haploid M. roreri genome has allowed lineages with unique genome structures and compositions to dominate as it expands its range, displaying a significant founder effect.
Project description:The basidiomycete Moniliophthora roreri causes frosty pod rot of cacao (Theobroma cacao) in the Western hemisphere. M. roreri is considered asexual and haploid throughout its hemibiotrophic lifecycle. To understand the processes driving genome modification, using long-read sequencing technology we sequenced and assembled five high quality M. roreri genomes out of a collection of ninety-nine isolates collected throughout the pathogen's range. We obtained chromosome-scale assemblies composed of eleven scaffolds. We used short-read technology to sequence the genomes of twenty-two similarly chosen isolates. Alignments among the five reference assemblies revealed inversions and segmental translocations and duplications between and within scaffolds. Isolates at the front of the pathogens’ expanding range tend to share lineage-specific structural variants, as confirmed by short-read sequencing. We identified, for the first time, three new mating type A locus alleles (five in total) and one new potential mating type B locus allele (three in total). Currently only two mating type combinations, A1B1 and A2B2, are known to exist outside of Colombia. A systematic survey of the M. roreri transcriptome across twenty-two isolates identified an expanded candidate effector pool and provided evidence that effector candidate genes unique to the Moniliophthoras have been selected for preferential expression during the biotrophic phase of disease. Notably, M. roreri isolates in Costa Rica carry a chromosome segment duplication that has doubled the associated gene complement and includes secreted proteins and candidate effectors. Clonal propagation of the haploid M. roreri genome has allowed lineages with unique genome structures and compositions to dominate as it expands its range, displaying a significant founder effect.