Project description:Five healthy Laoshan dairy goats (four years old, third lactation) from Qingdao Laoshan dairy goat primary farm (Shandong Province, China) were used. The mammary gland samples were collected surgically after general anaesthesia using Xylazine Hydrochloride injection solution (Huamu Animal Health Products Co., Ltd. China) at corresponding lactation stage, including early, peak and late lactations.
Project description:Gastric cancer is one of the most common malignant tumors. Asia has a high incidence of gastric cancer globally. South Korea, Mongolia, Japan and China are the four countries with the highest incidence of gastric cancer in the world. Gansu province in China has the estimated age-standardized incidence rates and mortality rates by Chinese standard population of 62.34/100,000 and 36.94/100,000, respectively, in 2012, which are much higher than the average level of China (22.06/100,000 and 15.16/100,000) in the same year. As a high incidence area of gastric cancer in China, Wuwei city in Gansu province has the prevalence of gastric cancer almost 5 times higher than the average level nationwide. In this study, the cancer tissues and matched adjacent normal mucosa tissues of 5 patients with early gastric cancers who were treated with ESD in Gansu Wuwei Tumor Hospital and the First Hospital of Lanzhou University were collected. All of the patients are from Gansu, China. MicroRNA array was used to find the differences in microRNAs expression profile between the early gastric cancer tissues and the para-cancer normal tissues. It is expected to explore the reasons of the abnormal high incidence of gastric cancer in Gansu Province, China, from the aspect of microRNAs expression profile characteristics.
2021-07-01 | GSE158315 | GEO
Project description:Intestinal microorganisms of five shellfish species in the Beibu Gulf, China
Project description:Shigui Ruan. Modeling the transmission dynamics and control of rabies in China. Mathematical Biosciences 286 (2017).
Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction-diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7.
2024-09-02 | BIOMD0000000726 | BioModels
Project description:Metabarcoding Analysis of Microbiome Dynamics During a Phaeocystis globosa Bloom in the Beibu Gulf, China