Project description:Transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T (wild type) grown in MRS medium with or without heme. Mutant LMG18811T::pSIP1333A (mutating cydB gene which is essential in the respiratory chain) grown in MRS with or without heme. Comparing mutant and wildtype with and without heme.
Project description:We announce the draft genome sequence of the type strain Leuconostoc carnosum KCTC 3525 (3,234,408 bp with a G+C content of 40.9%), one of the most prevalent lactic acid bacteria present during the manufacturing process of vacuum-packaged meats, which consists of 2,407 large contigs (>500 bp in size). The genome sequence was obtained by a whole-genome shotgun strategy using Roche 454 GS (FLX Titanium) pyrosequencing, and all of the reads were assembled using Newbler Assembler 2.3.
Project description:Leuconostoc carnosum is a known colonizer of meat-related food matrices. It reaches remarkably high loads during the shelf life in packaged meat products and plays a role in spoilage, although preservative effects have been proposed for some strains. In this study, the draft genomes of 17 strains of L. carnosum (i.e., all the strains that have been sequenced so far) were compared to decipher their metabolic and functional potential and to determine their role in food transformations. Genome comparison and pathway reconstruction indicated that L. carnosum is a compact group of closely related heterofermentative bacteria sharing most of the metabolic features. Adaptation to a nitrogen-rich environment, such as meat, is evidenced by 23 peptidase genes identified in the core genome and by the autotrophy for nitrogen compounds including several amino acids, vitamins, and cofactors. Genes encoding the decarboxylases yielding biogenic amines were not present. All the strains harbored 1-4 of 32 different plasmids, bearing functions associated to proteins hydrolysis, transport of amino acids and oligopeptides, exopolysaccharides, and various resistances (e.g., to environmental stresses, bacteriophages, and heavy metals). Functions associated to bacteriocin synthesis, secretion, and immunity were also found in plasmids. While genes for lactococcin were found in most plasmids, only three harbored the genes for leucocin B, a class IIa antilisterial bacteriocin. Determinants of antibiotic resistances were absent in both plasmids and chromosomes.