Project description:Improving the yield by modifying plant architecture is key to progressive crop domestication. Here, we show that a 110-kb deletion on the short arm of chromosome 7 promotes the critical transition from semi-prostrate growth and low yield in wild rice (Oryza rufipogon), to erect growth and high yield in Asian cultivated rice (O. sativa). The microdeletion harbors a tandem repeat of seven putative Cys2-His2 zinc-finger genes. Three of these genes regulate the plant architecture in O. rufipogon and are closely linked to the previously identified PROSTRATE GROWTH 1 (PROG1) gene. Therefore, we refer to this locus as RICE PLANT ARCHITECTURE DOMESTICATION (RPAD). Furthermore, a similar but independent 113-kb deletion was detected at the RPAD locus in African cultivated rice. These results indicate that the deletions, coupled with the loss of a tandem repeat of zinc-finger genes, drove the parallel domestication of plant architecture in Asian and African rice.
Project description:Hybrids and allopolyploids typically exhibit radically altered gene expression patterns relative to their parents, a phenomenon termed âtranscriptomic shock.â To distinguish the effects of hybridization from polyploidization on coregulation of divergent alleles, we analyzed expression of parental copies (homoeologs) of 11,608 genes using RNA-seq-based transcriptome profiling in reciprocal hybrids and tetraploids constructed from subspecies japonica and indica of Asian rice (Oryza sativa L.)
Project description:Towards understanding gene expression variation among related rice lineages on a genome-wide scale, we sought to assess global gene expression in the heading-stage panicle using a whole genome oligonucleotide microarray designed to represent 36,926 annotated indica genes. Using a loop-design, we interrogated gene expression patterns in six related rice lineages, including O. sativa (two Asian cultivars indica and japonica), O. nivara (Asian annual wild rice), O. rufipogon (Asian perennial wild rice) and O. glaberrima (African cultivated rice). Series_sample_order: Sample 1-12 Slide A; Sample 13-24 Slide B
Project description:Oryza longistaminata is an African wild rice species that possesses special traits for breeding applications. Self-incompatibility is the main cause of sterility in O. longistaminata, but here we demonstrated that its pollen fertility and vitality are normal. Lipid and carbohydrate metabolism were active throughout pollen development. In this study, transcriptomics quantitative analysis was used to investigate the profiles of genes related to lipid and carbohydrate metabolism in 4-, 6- and 8.5-mm O. longistaminata spikelets before flowering. We documented cytological changes throughout important stages of anther development, including changes in reproductive cells as they formed mature pollen grains through meiosis and mitosis. RNA-seq and proteome association analysis indicated that fatty acids were converted to sucrose after the 6-mm spikelet stage, based on the abundance of most key enzymes of the glyoxylate cycle and gluconeogenesis. In conclusion, our study provides novel insights into the pollen viability of O. longistaminata at the transcriptome level, which can be used to improve the efficiency of male parent pollination in hybrid rice breeding applications.
Project description:ZIKV strains belong to three phylogenetic lineages: East African, West African, and Asian/American. RNA virus genomes exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. The genetic diversity of representative ZIKVs (N=7) from each lineage was examined using next generation sequencing (NGS) paired with downstream Shannon entropy calculation and single nucleotide variant (SNV) analysis. This comprehensive analysis of ZIKV genetic diversity provides insight into the genetic diversity of ZKIV and repository of SNV positions across lineages.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Project description:Studies have shown that Rice Salt Sensitive 1 (RSS1) is involved in stress response in rice plants. Primers were developed for amplification via Polymerase Chain Reaction (PCR) of a region that contained a simple sequence repeat (SSR) in RSS1. PCR was performed on 6 different varieties of Oryza sativa. PCR product was sequenced on an ABI 3730 capillary sequence machine. Sequence data was aligned to observe differences in SSR length between each rice variety.
Project description:Lysine acetylation is a dynamic and reversible post-translational modification that plays an imporant role in the gene transcription regulation. Here, we report high quality proteome-scale data for lysine-acetylation sites and proteins in rice (Oryza sativa). A total of 1337 Kac sites in 716 Kac proteins with diverse biological functions and subcellular localizations were identified in rice seedlings.