Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients. 12 samples were collected from two long-term polluted areas (Olkusz and Miasteczko M-EM-^ZlM-DM-^Eskie) in Southern Poland. In the study presented here, a consecutively operated, well-defined cohort of 50 NSCLC cases, followed up more than five years, was used to acquire expression profiles of a total of 8,644 unique genes, leading to the successful construction of supervised
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. nirS gene diversity from two salt marsh experiments, GSM (4 treatments, 8 samples, duplicate arrays, four replicate blocks per array, 8 arrays per slide) and PIE (2 treatments, 16 samples, duplicate arrays four replicate blocks per array, 8 arrays per slide)
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs. Four full-scale wastewater treatment systems located in Beijing were investigated. Triplicate samples were collected in each site.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Project description:Anthropogenic perturbations to the nitrogen cycle, primarily through use of synthetic fertilizers, is driving an unprecedented increase in the emission of nitrous oxide (N2O), a potent greenhouse gas, and an ozone depleting substance, causing urgency in identifying the sources and sinks of N2O. Microbial denitrification is a primary contributor to the biotic production of N2O in anoxic regions of soil, marine systems, and wastewater treatment facilities. Here, through comprehensive genome analysis, we show that pathway partitioning is a ubiquitous mechanism of complete denitrification by microbial communities. We have further investigated the mechanisms and consequences of process partitioning through detailed physiological characterization and kinetic modeling of a synthetic community of Rhodanobacter R12 and Acidovorax 3H11. We have discovered that these two bacterial isolates from a heavily NO3- contaminated superfund site complete denitrification through the exchange of nitrite (NO2-) and nitric oxide (NO). Our findings further demonstrate that cooperativity within this denitrifying community emerges through process partitioning of denitrification and other processes, including amino acid metabolism. We demonstrate that certain contexts, such as high NO3-, cause unbalanced growth of community members, due to differences in their substrate utilization kinetics and inter-enzyme competition. The altered growth characteristics of community members drives accumulation of toxic NO2- , which disrupts denitrification causing N2O off gassing.
Project description:A shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination by a microbial enrichment culture called KB1. The array was constructed by spotting genomic fragments amplified from short-insert libraries of KB1 metagenomic DNA. Subsequently, the microarrays were interrogated with RNA extracted from KB1 during VC dechlorination (VC+methanol), and in the absence of VC (methanol-only). The most differentially expressed spots, and spots with the highest intensities, were then chosen to be sequenced. Sequencing revealed that Dehalococcoides (Dhc) genes involved in transcription, translation and energy generation were up-regulated during VC degradation. Furthermore, the results indicated that the reductive dehalogenase homologous (RDH) gene KB1rdhA14 is the only RDH gene up-regulated upon VC degradation, and that multiple RDH genes were more highly transcribed in the absence of VC. Numerous hypothetical genes from Dehalococcoides were also more highly transcribed in methanol only treatments and indicate that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. Spots with genes from Spirochaetes, Chloroflexi, Geobacter, Methanogens and phage organisms were differentially expressed and sequencing provided information from these uncultivated organisms that can be used to design primers for more targeted studies. This array format is powerful, as it does not require a priori sequence knowledge. This study provides the first report of such arrays being used to investigate transcription in a mixed community, and shows that this array format can be used to screen metagenomic libraries for functionally important genes.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
Project description:A shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination by a microbial enrichment culture called KB1. The array was constructed by spotting genomic fragments amplified from short-insert libraries of KB1 metagenomic DNA. Subsequently, the microarrays were interrogated with RNA extracted from KB1 during VC dechlorination (VC+methanol), and in the absence of VC (methanol-only). The most differentially expressed spots, and spots with the highest intensities, were then chosen to be sequenced. Sequencing revealed that Dehalococcoides (Dhc) genes involved in transcription, translation and energy generation were up-regulated during VC degradation. Furthermore, the results indicated that the reductive dehalogenase homologous (RDH) gene KB1rdhA14 is the only RDH gene up-regulated upon VC degradation, and that multiple RDH genes were more highly transcribed in the absence of VC. Numerous hypothetical genes from Dehalococcoides were also more highly transcribed in methanol only treatments and indicate that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. Spots with genes from Spirochaetes, Chloroflexi, Geobacter, Methanogens and phage organisms were differentially expressed and sequencing provided information from these uncultivated organisms that can be used to design primers for more targeted studies. This array format is powerful, as it does not require a priori sequence knowledge. This study provides the first report of such arrays being used to investigate transcription in a mixed community, and shows that this array format can be used to screen metagenomic libraries for functionally important genes. 2 Biological replicate experimens conducted 1 month apart. In the first there were 2 dye-swapped duplicates (total 4) of VC+MeOH versus MeOH only. In the second experiment there was one set of dye swapped arrays. Thus 6 arrays were performed including biological replicates, dye swapped replicates and technical duplicates.