Project description:Light is one of the main environmental cues that affects the physiology and behavior of many organisms. The effect of light on genome-wide transcriptional regulation has been well-studied in green algae and plants, but not in red algae. Cyanidioschyzon merolae is used as a model red algae, and is suitable for studies on transcriptomics because of its compact genome with a relatively small number of genes. In addition, complete genome sequences of the nucleus, mitochondrion, and chloroplast of this organism have been determined. Together, these attributes make C. merolae an ideal model organism to study the response to light stimuli at the transcriptional and the systems biology levels. Previous studies have shown that light significantly affects cell signaling in this organism, but there are no reports on its blue light- and red light-mediated transcriptional responses. We investigated the direct effects of blue and red light at the transcriptional level using RNA-seq. Blue and red light were found to regulate 35% of the total genes in C. merolae. Blue light affected the transcription of genes involved protein synthesis while red light specifically regulated the transcription of genes involved in photosynthesis and DNA repair. Blue or red light regulated genes involved in carbon metabolism and pigment biosynthesis. Overall, our data showed that red and blue light regulate the majority of the cellular, cell division, and repair processes in C. merolae.
Project description:Light is one of the main environmental cues that affects the physiology and behavior of many organisms. The effect of light on genome-wide transcriptional regulation has been well-studied in green algae and plants, but not in red algae. Cyanidioschyzon merolae is used as a model red algae, and is suitable for studies on transcriptomics because of its compact genome with a relatively small number of genes. In addition, complete genome sequences of the nucleus, mitochondrion, and chloroplast of this organism have been determined. Together, these attributes make C. merolae an ideal model organism to study the response to light stimuli at the transcriptional and the systems biology levels. Previous studies have shown that light significantly affects cell signaling in this organism, but there are no reports on its blue light- and red light-mediated transcriptional responses. We investigated the direct effects of blue and red light at the transcriptional level using RNA-seq. Blue and red light were found to regulate 35% of the total genes in C. merolae. Blue light affected the transcription of genes involved protein synthesis while red light specifically regulated the transcription of genes involved in photosynthesis and DNA repair. Blue or red light regulated genes involved in carbon metabolism and pigment biosynthesis. Overall, our data showed that red and blue light regulate the majority of the cellular, cell division, and repair processes in C. merolae.
Project description:Light is one of the main environmental cues that affects the physiology and behavior of many organisms. The effect of light on genome-wide transcriptional regulation has been well-studied in green algae and plants, but not in red algae. Cyanidioschyzon merolae is used as a model red algae, and is suitable for studies on transcriptomics because of its compact genome with a relatively small number of genes. In addition, complete genome sequences of the nucleus, mitochondrion, and chloroplast of this organism have been determined. Together, these attributes make C. merolae an ideal model organism to study the response to light stimuli at the transcriptional and the systems biology levels. Previous studies have shown that light significantly affects cell signaling in this organism, but there are no reports on its blue light- and red light-mediated transcriptional responses. We investigated the direct effects of blue and red light at the transcriptional level using RNA-seq. Blue and red light were found to regulate 35% of the total genes in C. merolae. Blue light affected the transcription of genes involved protein synthesis while red light specifically regulated the transcription of genes involved in photosynthesis and DNA repair. Blue or red light regulated genes involved in carbon metabolism and pigment biosynthesis. Overall, our data showed that red and blue light regulate the majority of the cellular, cell division, and repair processes in C. merolae. Identification of blue light and red light regulated genes by deep sequencing in biological duplicates. qRT-PCR was performed to verify the RNA-seq results.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.