Project description:In previous work in our group, shotgun genome sequencing of Arthrobacter sp. revealed potential new P450 monooxygenases and many other oxidoreductases with putative hydroxylation activity. A targeted approach to identify enzymes involved in the degradation of certain molecules is proteomic analysis. In the case of growth on certain substances, enzymes like P450s, which are responsible for the observed organism’s capabilities, might be overexpressed or initially induced.
Project description:Arthrobacter sp. CGMCC 3584 are able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. DNA array-based transcriptional analysis of Arthrobacter cells was conducted to elucidate the higher productivity of cAMP under high oxygen supply. Results showed that 14.1% and 19.3% of the whole genome genes were up-regulated and down-regulated notably, respectively. The largest group with altered transcriptional levels belonged to the group involved in carbohydrate transport and metabolism. Other large functional groups of differentially expressed genes changed significantly included amino acid transport and metabolism, inorganic ion transport and metabolism and transcription.
Project description:Arthrobacter sp. CGMCC 3584 are able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. Comparative transcriptomic analysis revealed that arpde inactivation had two major effects on metabolism: inhibition of glycolysis, PP pathway, and amino acid metabolism; promotion of the purine metabolism and carbon flux from the precursor PRPP, which benefited cAMP production.
Project description:We conducted microarray experiments by comparing constitutive and inducible Flowering Locus T1 (FT1) and FT2 constructs with appropriate controls, followed by the identification of common targets of Pro35S:FT1 and ProHSP:FT1 or Pro35S:FT2 and ProHSP:FT2.
Project description:We conducted microarray experiments by comparing constitutive and inducible Flowering Locus T1 (FT1) and FT2 constructs with appropriate controls, followed by the identification of common targets of Pro35S:FT1 and ProHSP:FT1 or Pro35S:FT2 and ProHSP:FT2. Independent samples of leaf tissues were collected from 1- to 2-year-old plants. Each replication represents an individual plant from one of the treatment lines. RNA was extracted from tissues and hybridized on the Affymetrix GeneChip Poplar Genome Array.