Project description:Ehf is a transcriptional regulator that is highly expressed and enriched in corneal epithelium. To gain insights into the role of Ehf in the corneal epithelium, we performed siRNA knockdown of Ehf in primary human corneal epithelial cells. Primary human corneal epithelial cells were transfected with siEhf or si controls, plated, and harvested at 72 hr.
Project description:Ehf is a transcriptional regulator that is highly expressed and enriched in corneal epithelium. To gain insights into the role of Ehf in the corneal epithelium, we performed siRNA knockdown of Ehf in primary human corneal epithelial cells.
Project description:We analysed active enhancers after EBV infection in MKN7_EB and potential EHF motif binding regions by performing ChIP-seq on H3K4me3, H3K4me1 and H3K27ac.
Project description:The cornea, composed of epithelium, stroma and endothelium, protects the anterior compartment of the eye from damage and allows transmission of light into the eye. While well described morphologically, no studies have investigated the global gene expression changes in the cornea throughout the mouseM-bM-^@M-^Ys life. We characterized the global gene expression profile of mouse cornea from early development through aging, and compared to gene expression in other epithelial tissue, to identify cornea enriched genes, pathways, and transcriptional regulators. We identified Ehf, an ets family transcription factor, as being highly selectively expressed in the corneal epithelium compared to the stroma, and highly expressed in cornea compared to other epithelial tissues. siRNA experiments and Ehf ChIP-Seq on mouse corneal epithelium confirm the role of this factor in promoting epithelial identity and cell differentiation, and suggest it carries out these functions through interactions with other cornea epithelial differentiation factors including Klf4. Whole eye globes were dissected from wild type CB6 mice. Corneal epithelium was isolated by digestion in 50% EMEM/dispase II with 50 mM sorbitol for two hours at 37M-BM-0C. ChIP was performed with an Ehf antibody, and was sequenced with an input control.
Project description:The cornea, composed of epithelium, stroma and endothelium, protects the anterior compartment of the eye from damage and allows transmission of light into the eye. While well described morphologically, no studies have investigated the global gene expression changes in the cornea throughout the mouse’s life. We characterized the global gene expression profile of mouse cornea from early development through aging, and compared to gene expression in other epithelial tissue, to identify cornea enriched genes, pathways, and transcriptional regulators. We identified Ehf, an ets family transcription factor, as being highly selectively expressed in the corneal epithelium compared to the stroma, and highly expressed in cornea compared to other epithelial tissues. siRNA experiments and Ehf ChIP-Seq on mouse corneal epithelium confirm the role of this factor in promoting epithelial identity and cell differentiation, and suggest it carries out these functions through interactions with other cornea epithelial differentiation factors including Klf4.
Project description:We compared the genome occupancy for FLAG-tagged versions of the ETS factors ERG and EHF in the normal prostate epithelial cell line RWPE1. Our in vitro binding studies support a model whereby oncogenic ETS factors like ERG bind cooperativly with AP1 factors at closly spaced ETS-AP1 sites, while certain non-oncogenic factors like EHF bind anti-cooperatively with AP1 at the same sites. ETS and AP1 binding motifs were enriched in both ChIP datasets, but the ERG-FLAG bound reginos contained a much higher percentage of ETS-AP1 sites spaced in close proximity, consistent with our in vitro binding data.