Project description:Background: The Malnad Gidda are unique dwarf Bos indicus cattle native to heavy rainfall Malnad and coastal areas of Karnataka in India. These cattle are highly adapted to harsh climatic conditions and are more resistant to Foot and Mouth disease as compared to other breeds of B.indicus. Since the first genome reference became available from B.taurus Hereford breed, only a few other breeds have been genotyped using high-throughput platforms. Also despite the known reports on high diversity within indicine breeds as compared to taurine breeds, only one draft genome of Nellore and horn transcriptome of Kankrej breed were sequenced at base level resolution. Because of the special characteristics Malnad Gidda possess, it becomes the choice of breed among many indicine cows to study at molecular level and genotyping. Results: Sequencing mRNA from the PBMCs isolated from blood of one selected Malnad Gidda bull resulted in generation of 55 million paired-end reads of 100bp length. Raw sequencing data is processed to trim the adaptor and low quality bases, and are aligned against the whole genome and transcript assemblies of Bos taurus UMD 3.1 and Bos indicus (Nellore breed) respectively. About 72% of the sequenced reads from our study could be mapped against the B.taurus genome where as only 41% of reads could be mapped against the Bos indicus transcript assembly. Transcript assembly from the alignment carried out against the annotated B.taurus UMD 3.1 genome resulted in identification of ~10,000 genes with significant expression (FPKM>1). In a similar analysis against the B.indicus Kankrej assembled transcripts we could identify only ~6,000 transcripts. From the variant analysis of the sequencing data we found ~10,000 SNPs in coding regions among which ~9,000 are novel and ~6,400 are amino acid changing. Conclusions: For the first time we have genotyped and explored the transcriptome of B.indicus Malnad Gidda breed. A comparative analysis of mapping the RNA-Seq data against the available reference genome and transcript sequences is demonstrated. An enhanced utility of transcript sequencing could be achieved by improving or completing the sequence assembly of any B.indicus breed to better characterize the indicine breeds for productivity features and selective breeding.
Project description:Purpose: The aim was to find the differentially expressed genes between the WT1 overexpressed group and the control group Methods:Hacat cell was transfected with WT1 overexpressed plasmids and blank plasmids, then RNA from both groups of cells was sequenced. The data obtained from the sequencing is called raw reads, and then the raw reads are subject to quality control QC. After the quality control is passed, the filtered clean reads are compared to the reference genome, This was followed by gene Quantitative analysis, gene expression level based analyses, and more in depth mining analyses such as GO functional significance enrichment analysis and pathway significance enrichment analysis for the selected differentially expressed genes between samples. Conclusions:Our study was the first to analyze the transcriptome of Hacat cells overexpressing WT1 generated by RNA-seq technique and to conduct biological replication. Six samples were measured using BGISEQ-500 platform, and the average output of each sample was 21.89 m. The average ratio of sample to genome was 94.81% . A total of 17,693 genes were detected. A total of 181 differentially expressed genes between the two groups were analyzed by GO and Kegg.