Project description:Illumina mRNA-Seq is comparable to microarray analysis for transcript quantification but has increased sensitivity and, importantly, the potential to distinguish between homoeologous genes in polyploids. Using a novel curing process, we adapted a reference sequence that was a consensus derived from ESTs from both Brassica A and C genomes to one containing A and C genome versions for each of the 94,558 original unigenes. We aligned reads from Brassica napus to this cured reference, finding 38% more reads mapping in resynthesised lines and 28% in natural lines. Where the A and C versions differed at single nucleotide positions, termed inter-homoeologue polymorphisms (IHPs), we were able to apportion expression in the polyploid to the A or C genome homoeologues. 43,761 unigenes contained at least one IHP, with a mean frequency of 10.5 per kb unigene sequence. 6,350 of the unigenes with IHPs were differentially expressed between homoeologous gene pairs in resynthesised B. napus. 3,212 unigenes showed a similar pattern of differential expression across a range of natural B. napus crop varieties and, of these, 995 were in common with resynthesised B. napus. Functional classification showed over-representation in gene ontology categories not associated with dosage-sensitivity.
Project description:mRNA expression profiling of the embryo, endosperm (micropylar, peripheral, chalazal), and seed coat (outer, inner, chalazal, chalazal proliferating tissue) of the developing Brassica napus seed. Tissues were isolated using laser microdissection (LMD) from Brassica napus seeds at the globular, heart, and mature green stages of seed development.
Project description:Analysis of the different gene expression profiles of natural and resynthesized Brassica polyploids with Illumina deep sequencing technology could help to improve our knowledge of polyploid genome evolution. We obtained approximately 6 million sequence tags per sample,and 6018254, 5930726, 6022170, 5950123, 5991210, 5798939, 5823113, 5772449,5858527 and 5657697 clean tags were obtained in libraries of B. rapa, B. oleracea, B. napus-F1, B. napus-F2, B. napus-F3, B. napus-F4, natural B. napus, B. nigra, B. juncea and B. carinata, respectively.16574, 15970, 22059, 18155, 16479, 18196, 17448, 13867, 19424 and 16645 genes of B. rapa genome were unambigously mapped by sequence tags of these ten DGE libraries, respectively. Differentially expressed genes during polyploidization were broadly discovered by comparing the tetraploids with their progenitors.
Project description:Analysis of the different gene expression profiles of natural and resynthesized Brassica polyploids with Illumina deep sequencing technology could help to improve our knowledge of polyploid genome evolution. We obtained approximately 6 million sequence tags per sample,and 6018254, 5930726, 6022170, 5950123, 5991210, 5798939, 5823113, 5772449,5858527 and 5657697 clean tags were obtained in libraries of B. rapa, B. oleracea, B. napus-F1, B. napus-F2, B. napus-F3, B. napus-F4, natural B. napus, B. nigra, B. juncea and B. carinata, respectively.16574, 15970, 22059, 18155, 16479, 18196, 17448, 13867, 19424 and 16645 genes of B. rapa genome were unambigously mapped by sequence tags of these ten DGE libraries, respectively. Differentially expressed genes during polyploidization were broadly discovered by comparing the tetraploids with their progenitors. mRNA obtained from young leaves of 28-days-old seedlings were compared during polyploidization.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress.
Project description:The purposes of this study are to compare euploid B. napus cv. “Oro” and the C1 nullisomics transcriptome profiling (RNA-seq) and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods: Leaves mRNA profiles of 30-day-old euploid B. napus cv. “Oro” and the C1 nullisomics were generated by deep sequencing, in triplicate, using Illumina. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods. qRT–PCR validation was performed. Results: After the high-throughput sequencing, each sample generated 7.2G Clean data on average and the 44.6-53.8 million clean reads were generated. Our study represents detailed analysis of leaves transcriptomes in euploid B. napus and nullisomic, with biologic replicates, generated by RNA-seq technology for comparative investigations of expression profiles. Our results show that Dose complementary effect exists between highly homologous genes, and partial loss of C subgenomic chromosome will lead to increased expression of A genome.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress. Two-condition experiment, control vs heat stress, 2 time points
Project description:Time course of gene expression profiles during seed development and maturation in Brassica napus were studied using Combimatrix Brassica microarray.
Project description:Time course of gene expression profiles during seed development and maturation in Brassica napus were studied using Combimatrix Brassica microarray. The time course expression of 90K Brassica napus EST contigs were measured at 8 developing seed stages of 10, 15, 20, 25, 30, 35, 40 and 45 DAF (days after flowering) using single color microarray