Project description:The pupose of this study is to explore the mitophagy related transcriptome profiling of the astrocytes differentiated from POLG patient iPSCs compared to the astrocytes generated from healthy control iPSCs.
Project description:The pupose of this study is to explore thel transcriptome profiling of the astrocytes differentiated from POLG patient iPSCs comparing to the astrocyte generated from health control iPSCs or ESCs.
Project description:Mitophagy related expression profiling by high throughput sequencing for human induced pluripotent stem cells (iPSCs) derived astrocytes
Project description:Astrocytes, the predominant glial cells in the central nervous system, play essential roles in maintaining brain function. Reprogramming induced pluripotent stem cells (iPSCs) to become astrocytes through overexpression of the transcription factors, NFIB and SOX9, is a rapid and efficient approach for studying human neurological diseases and identifying therapeutic targets. However, the precise differentiation path and molecular signatures of induced astrocytes remain incompletely understood. Accordingly, we performed single-cell RNA sequencing analysis on 64,736 cells to establish a comprehensive atlas of NFIB/SOX9-directed astrocyte differentiation from human iPSCs. Our dataset provides detailed information about the path of astrocyte differentiation, highlighting the stepwise molecular changes that occur throughout the differentiation process. This dataset serves as a valuable reference for dissecting uncharacterized transcriptomic features of NFIB/SOX9-induced astrocytes and investigating lineage progression during astrocyte differentiation. Moreover, these findings pave the way for future studies on neurological diseases using the NFIB/SOX9-induced astrocyte model.
Project description:Pathogenic NOTCH1 mutations are linked to congenital heart defects. To pinpoint how NOTCH1 deficiency affects cardiac development, we generated homozygous NOTCH1 knockout (N1KO) human induced pluripotent stem cells (iPSCs). We then performed high-throughput RNA-seq to profile differential gene expression in cardiomyocytes (iPSC-CMs) and endothelial cells (iPSC-ECs) derived from wild type (WT) and N1KO iPSCs.
Project description:Corneal endothelial cells (CECs) are critical to maintaining clarity of the cornea. This study was initiated to develop peripheral blood mononuclear cells (PBMC)-originated induced pluripotent stem cells (iPSCs)-derived CECs. We isolated PBMC and programmed the mononuclear cells to generate iPSCs. Subsequently, the PBMC-originated iPSCs were differentiated to CECs. The morphology of differentiating iPSCs was examined at regular intervals by phase contrast microscopy. In parallel, the expression of pluripotent, and CECs-associated markers was investigated by quantitative real-time PCR (qRT-PCR). The molecular architecture of the iPSCs-derived CECs and human corneal endothelium (CE) were examined by mass spectrometry-based proteome sequencing. The PBMC-originated iPSCs expressed pluripotent-specific markers at levels similar to expression in H9 human embryonic stem cells (hESCs). Phase contrast microscopy illustrated that iPSCs-derived CECs are tightly adherent, exhibiting a hexagonal-like shape, one of the cardinal characteristics of CECs. The CECs-associated markers were expressed at many orders of magnitude higher in iPSCs-derived CECs at days 13, 20, and 30 compared to their respective levels in iPSCs. Importantly, only residual expression levels of pluripotency markers were detected in iPSCs-derived CECs. Mass spectrometry-based proteome profiling identified 10,575 proteins in iPSCs-derived CECs. In parallel, we completed proteome profiling of the human CE identifying 6345 proteins. Of these, 5763 proteins were identified in the iPSCs-derived CECs suggesting a 90.82% overlap between the iPSCs-derived CECs and human CE proteomes. Importantly, cryopreservation of iPSCs-derived CECs did not affect the tight adherence of CECs, and their hexagonal-like shape while expressing high levels of CECs-associated markers. We have successfully developed a personalized approach to generate CECs that closely mimic the molecular architecture of the human CE. To the best of our knowledge, this is the first report describing the development of PBMC-originated, iPSCs-derived CECs.
Project description:APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer’s disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined in human cellular context. In this study, we generated human astrocyte model carrying APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs), in which isogenic APOE4 iPSCs were genome-edited from healthy control APOE3 iPSCs. By transcriptome analysis of human astrocytes between APOE genotypes, we showed the upregulation of an extracellular matrix glycoprotein in human APOE4 astrocytes, which may cause synaptic degeneration in concert with the equivocal reactive character and lipid change. Together, these results demonstrate novel negative impact of human APOE4 astrocyte on synaptic integrity and lead to a promising therapeutic intervention into APOE4-carriers.
Project description:Non-neuronal cell types such as astrocytes can contribute to Parkinson’s disease (PD) pathology. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is one of the most common known causes of familial PD. To characterize its effect on astrocytes, we developed a protocol to produce midbrain-patterned astrocytes from human induced pluripotent stem cells (iPSCs) derived from PD LRRK2 G2019S patients and healthy controls. In order to understand the effect of this mutation on astrocyte function, we compared the gene expression profiles of iPSC-derived midbrain-patterned astrocytes from PD patients with those from healthy controls.