Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification This experiment is part of a much larger experiment. We have produced 4 454 metatranscriptomic datasets and 6 454 metagenomic datasets. These were derived from 4 samples. The experiment is an ocean acidification mesocosm set up in a Norwegian Fjord in 2006. We suspended 6 bags containing 11,000 L of sea water in a Coastal Fjord and then we bubbled CO2 through three of these bags to simulate ocean acidification conditions in the year 2100. The other three bags were bubbled with air. We then induced a phytoplankton bloom in all six bags and took measurements and performed analyses of phytoplankton, bacterioplankton and physiochemical characteristics over a 22 day period. We took water samples from the peak of the phytoplankton bloom and following the decline of the phytoplankton bloom to analyses using 454 metagenomics and 454 metatranscriptomics. Day 1, High CO2 Bag and Day 1, Present Day Bag, refer to the metatranscriptomes from the peak of the bloom. Day 2, High CO2 Bag and Day 2, Present Day Bag, refer to the metatranscriptomes following the decline of the bloom. Obviously High CO2 refers to the ocean acidification mesocosm and Present Day refers to the control mesocosm. Raw data for both the metagenomic and metatranscriptomic components are available at NCBI's Short Read Archive at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000101
Project description:Mechanisms allowing P. freudenreichii adaptation to digestive stresses have been only studied in vitro so far. Our aim was therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ. We maintained a pure culture of P. freudenreichii CIRM-BIA1, contained in a dialysis bag, within the colon of vigilant piglets during 24 hours. A transcriptomic analysis identified the metabolic pathways induced by this environment, in comparison with control propionibacteria maintained in spent culture medium. 12 cutures in a dialysis bag in the colon of piglets during 24H compared to 12 cultures propionibacteria maintained in spent culture medium
Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.