Project description:Manuscript describes the daily dynamics of transcriptional responses in whole blood, from acute to convalescent phase, in severe and non-severe COVID-19 patients.
Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:Although most SARS-CoV-2-infected individuals experience mild COVID-19, some patients suffer from severe COVID-19, which is accompanied by acute respiratory distress syndrome and systemic inflammation. To identify factors driving severe progression of COVID-19, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from healthy donors, patients with mild or severe COVID-19, and patients with severe influenza. Patients with COVID-19 exhibited hyper-inflammatory signatures across all types of cells among PBMCs, particularly upregulation of the TNF/IL-1beta-driven inflammatory response as compared to severe influenza. In classical monocytes from patients with severe COVID-19, type I IFN response co-existed with the TNF/IL-1beta-driven inflammation, and this was not seen in patients with milder COVID-19 infection. Based on this, we propose that the type I IFN response exacerbates inflammation in patients with severe COVID-19 infection.
Project description:Many clinical risk factors for severe COVID-19, such as diabetes, hypertension, and high body mass index have been reported. However, searching for additional risk factors should be continued to predict the progression of severe COVID-19 more accurately. We suppose that clonal hematopoiesis of indeterminate potential (CHIP) can also be regarded as one of risk factors. To identify the influence of CHIP in COVID-19 pathogenesis, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from severe COVID-19 patient with CHIP and integrate the data with other published COVID-19 scRNA seq data (GSE149689). After clustering and annotating cell types, we compare the expression profiles between CHIP vs non-CHIP COVID-19 severe patient.
Project description:The clinical course of Coronavirus disease 2019 (COVID-19) displays a wide variability, ranging from completely asymptomatic forms to diseases associated with severe clinical outcomes. To reduce the incidence COVID-19 severe outcomes, innovative molecular biomarkers are needed to improve the stratification of patients at the highest risk of mortality and to better customize therapeutic strategies. MicroRNAs associated with COVID-19 outcomes could allow quantifying the risk of severe outcomes and developing models for predicting outcomes, thus helping to customize the most aggressive therapeutic strategies for each patient. Here, we analyzed the circulating miRNA profiles in a set of 12 hospitalized patients with severe COVID-19, with the aim to identify miRNAs associated with in-hospital mortality.
Project description:While critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during COVID-19 ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using scRNA-seq and plasma proteomics, we discovered that compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin (PG) signalling. Dexamethasone during severe COVID-19 depleted circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated gene, and activated IL1R2+ve neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils, preferential steroid-induced immature neutrophil expansion, and possibly different effects on outcome. Our single-cell atlas (www.biernaskielab.ca/COVID_neutrophil) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
Project description:The objective of this experiment was to compare the transcriptomic profile (NanoString platform) of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild disease, and patients with severe COVID-19 with and without dexamethasone treatment, and healthy controls. We analyzed PBMCs from 4 mild COVID patients, 3 severe COVID patients,4 severe COVID patients treated with dexamethasone, and 5 healthy controls
Project description:Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which K18-hACE2 mice were fed an obesity-inducing western diet (WD) for over 3 months before intranasal infection with SARS-CoV2. After infection, the WD-fed K18-hACE2 mice lost more body weight and had more severe lung inflammation than normal chow (NC)-fed mice. Bulk RNAseq analysis of lungs and adipose tissue revealed that a diverse landscape of various immune cells, inflammatory markers, and pathways are upregulated in obese COVID-19 patients or the WD-fed K18-hACE2 mice when compared with their respective control groups. When compared with infected NC-fed mice in the lung, the infected WD-fed mice had upregulation of IL-6, a well-established marker for severe COVID-19. These results indicate that obesity-accelerated severe COVID-19 caused by SARS-CoV-2 infection in the K18-hACE2 mouse model can be used for dissecting the cellular and molecular mechanisms underlying pathogenesis. Furthermore, in the transcriptome analysis of the lung and adipose tissue obtained from deceased COVID-19 patients, we found upregulation of an array of genes and pathways associated with Inflammation. Both the K18-hACE2 mouse model and human COVID-19 patient data support a link between inflammation and an obesity-accelerated COVID-19 disease phenotype.
Project description:We performed single cell transcriptomics in 13 acute and convalescent mild versus severe COVID-19 subjects, in healthy controls and in sujects with flu-like-illness and HBV infection to assess COVID-19-specific T cell populations und function.