Project description:Roothans et al., analyzed heterotrophic denitrification processes that can be an important source of nitrous oxide. We employed planktonic nitrification-inhibited denitrifying enrichment cultures under alternating oxic-anoxic conditions. The dynamic conditions resulted in a general presence of the denitrifying enzymes. Overall, we show that aerobic denitrification should not be neglected as an ecologically relevant process. Contact author: m.laureni@tudelft.nl
2024-07-17 | PXD042057 | Pride
Project description:Influence of heterotrophic nitrifying/aerobic denitrifying bacterial communities on nitrogen removal from decentralized domestic wastewaters in pilot-scale tidal flow constructed wetlands
| PRJNA559475 | ENA
Project description:Enhanced removal of typical odor compounds in constructed wetlands integrated with iron carbon and tidal flow
| PRJNA901649 | ENA
Project description:Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater
| PRJNA514969 | ENA
Project description:Nitrification, denitrification and phosphorus removal , NiDeMP
| PRJNA527917 | ENA
Project description:Effects of hydraulic loading rate and substrate on ammonium removal in tidal flow constructed wetlands treating black and odorous water bodies
Project description:Nitrogen and arsenic contaminants often coexist in groundwater, and microbes show the potential for simultaneous removal of nitrogen and arsenic. Here, we reported that Hydrogenophaga sp. H7 was heterotrophic nitrification and aerobic denitrification (HNAD) and arsenite [As(III)] oxidation bacterium. Strain H7 presented efficient capacities for simultaneous NH4+-N, NO3--N, or NO2--N removal with As(III) oxidation during aerobic cultivation. Strikingly, the bacterial ability to remove nitrogen and oxidize As(III) has remained high across a wide range of temperatures, pH values, and shaking speeds, exceeding that of the most commonly reported HNAD bacteria. Additionally, the previous HNAD strains exhibited a high denitrification efficiency, but a suboptimal concentration of nitrogen remained in the wastewater. Here, strain H7 combined with FeCl3 efficiently removed 96.14% of NH4+-N, 99.08% of NO3--N, and 94.68% of total nitrogen (TN), and it oxidized 100% of As(III), even at a low nitrogen concentration (35 mg/L). The residues in the wastewater still met the Surface Water Environmental Quality Standard of China after five continuous wastewater treatment cycles. Furthermore, genome and proteomic analyses led us to propose that the shortcut nitrification-denitrification pathway and As(III) oxidase AioBA are the key pathways that participate in simultaneous nitrogen removal and As(III) oxidation.
2022-12-09 | PXD038710 |
Project description:investigate tidal flow constructed wetland microbial community diversity
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
2013-08-24 | GSE50164 | GEO
Project description:Microbial community of constructed wetlands with endogenous denitrification and denitrification EBPR