Project description:Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicer and anti-icer runoff. This study investigated relations of heterotrophic biofilm prevalence and community composition to environmental conditions at stream sites upstream and downstream of Milwaukee Mitchell International Airport in Milwaukee, WI, during two deicing seasons (2009–2010 and 2010–2011). Modern genetic tools (such as microarray) have not previously been applied to biofilm communities in this type of setting. We used microarray results to characterize biofilm community composition as well as the response of the biofilm community to environmental factors (i.e., organic content (using chemical oxygen demand concentration) and temperature).
Project description:Multispecies biofilms are the predominant form of bacterial growth in natural and human-associated environments. Although the pathways involved in monospecies biofilm have been well characterized, less is known about the metabolic pathways and emergent traits of a multispecies biofilm community. Here, we performed a transcriptome survey of the developmental stages of a 3-species biofilm community and combined it with quantitative imaging and growth experiments. We report the remodelling of central metabolism of two of the three species in this community. Specifically, we observed an increase in the expression of genes associated with glycolysis and pentose phosphate pathways in K. pneumoniae. Similarly, a decrease in the expression of the same pathways in P. protegens was observed along with an increase in expression of glyoxalate cycle genes when grown as a mixed species biofilm, suggesting reorganisation of metabolic pathways and metabolite sharing for the community biofilms. To test the possibility of cross-feeding for the community, planktonic growth experiments revealed that both the Pseudomonads grew well in TCA cycle intermediates, while K. pneumoniae grew poorly when given those carbon sources. Despite this poor growth in mono-culture, K. pneumoniae was still the dominant species in mixed species biofilms cultivated in TCA intermediates as the sole source of carbon. The biofilm growth data, combined with the transcriptomics data, suggests there is reorganisation of metabolism for the community members and may allow for cross-feeding that allows K. pneumoniae to dominate the community. We also demonstrated that sdsA1 of P. aeruginosa was induced upon exposure to the surfactant SDS and that this gene was essential in protecting mono and mixed species biofilms from surfactant stress. This also suggests that the community members can share defence mechanisms. Overall, this study describes a comprehensive transcriptomics level investigation of shared resources, metabolites and stress defence that may underpin the emergent properties of mixed species biofilm communities.
Project description:ILS1 mutated Candida albicans was unable to grow as yeast-phase cells but was capable of producing a tridimensional biofilm structure in spite of reduced metabolic activity. This biofilm still relied on the classical biofilm genes, while it differentially induced groups of genes involved in adhesion, protein synthesis, cell wall organization, and protein folding. Although the conditional mutant repressed genes annotated for morphology and homeostasis processes affecting morphology and metabolism, the dynamic cell growth enabled the construction of a complex biofilm community independent of ILS1.
Project description:Cyanobacteria frequently constitute integral components of microbial communities known as phototrophic biofilms, which are widespread in various environments and hold significant industrial relevance. Previous studies of the model cyanobacterium Synechococcus elongatus PCC 7942 revealed that its planktonic growth habit results from a biofilm-suppression mechanism that depends on an extracellular inhibitor, an observation that opens the door to investigating cyanobacterial intercellular communication. Here, we demonstrate that the RNA polymerase sigma factor SigF1, is required for this biofilm-suppression mechanism and suggest that sigF1-inactivation impairs secretion of the biofilm inhibitor. The S. elongatus paralog SigF2, however, is not involved in biofilm regulation. Comprehensive transcriptome analyses identified distinct regulons under the control of each of these sigma factors. Additional data indicate that SigF1 regulates biofilm through its involvement in transcriptional induction of genes that include those for the primary pilus subunit: sigF1 inactivation both prevents pilus assembly and abrogates secretion of the biofilm inhibitor. Consequently, expression is significantly upregulated for the ebfG-operon that encodes matrix components and the genes that encode the corresponding secretion system. Thus, this study uncovers a basic regulatory component of cyanobacterial intercellular communication, a field that is in its infancy. Elevated expression of biofilm-promoting genes in a sigF1 mutant supports an additional layer of regulation by SigF1 that operates via an intracellular mechanism.
Project description:Biofilms undergo a life cycle where cells attach to a surface, grow and produce a structured community before dispersing to seed biofilms in new environments. Progression through this life cycle requires controlled temporal gene expression to maximise fitness at each stage. Previous studies have focused on the essential genome for the formation of a mature biofilm, but here we present an insight into the genes involved at different stages of biofilm formation. We used TraDIS-Xpress (a massively parallel transposon mutagenesis using transposon-located promoters to assay expression of all genes in the genome) to determine how gene essentiality and expression affects the fitness of E. coli growing as a biofilm on glass beads after 12, 24 and 48 hours. An E. coli transposon mutant library of approximately 800,000 unique mutants was grown on glass beads, and a planktonic sample was taken alongside this at each time point to compare gene essentiality and expression at each time point.
Project description:The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Project description:Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity overtime. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in HotLake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gamma proteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities.
Project description:Anode-associated multi-species exoelectrogenic biofilms are essential to the function of bioelectrochemical systems (BESs). The investigation of electrode-associated biofilms is critical to advance understanding of the function of individual members within communities that thrive using an electrode as the terminal electron acceptor. This study focusses on the analysis of a model biofilm community consisting of Shewanella oneidensis, Geobacter sulfurreducens and Geobacter metallireducens. The conducted experiments revealed that the organisms can build a stable biofilm on an electrode surface that is rather resilient to changes in the redox potential of the anode surface. The community operated at maximum electron transfer rates with electrode potentials of 0.04 V versus normal hydrogen electrode. Current densities decreased gradually with lower potentials and reached half-maximal values at -0.08 V. A positive interaction of the individual strains could be observed in our experiments. At least S. oneidensis and G. sulfurreducens show an upregulation of their central metabolism as a response to cultivation under mixed-species conditions. Interestingly, G. sulfurreducens was detected in the planktonic phase of the bioelectrochemical reactors only in mixed-culture experiments but not when it was grown in the absence of the other two organisms. It is possible that G. sulfurreducens cells used flavins which were released by S. oneidensis cells as electron shuttles. This would allow the organism to broaden its environmental niche. To the best of our knowledge, this is the first study describing the dynamics of biofilm formation of a model exoelectrogenic community, the resilience of the biofilm, and the molecular responses towards mixed-species conditions.